goalng1.14不同场景下sync.Map、Mutex、RWMutex锁性能测试对比

因为使用go过程中会经常使用map存储,多个goroutine会出现资源竞争的问题,所以写个demo测试一下不同方式的锁性能开销。

1.环境

MacBook Pro (15-inch, 2016)
2.6 GHz Intel Core i7
16 GB 2133 MHz LPDDR3

golang版本:1.14

2.代码

var (
    num  = 1000 * 10
    gnum = 1000
)
func Test_main(t *testing.T) {
    count := 10000
    div := int(50) //抽样写比例 1/5
    fmt.Println("only read")
    testRwmutexReadOnly(count)
    testMutexReadOnly(count)
    //test sync.map
    testSyncMapReadOnly(count)

    fmt.Println("write and read")
    testRwmutexWriteRead(count, div)
    testMutexWriteRead(count, div)
    testSyncMapWriteRead(count, div)

    fmt.Println("write only")
    testRwmutexWriteOnly(count)
    testMutexWriteOnly(count)
    testSyncMapWriteOnly(count)

}

func testRwmutexReadOnly(count int) {
    var w = &sync.WaitGroup{}
    var rwmutexTmp = newRwmutex(count)
    w.Add(gnum)
    t1 := time.Now()
    for i := 0; i < gnum; i++ {
        go func() {
            defer w.Done()
            for in := 0; in < num; in++ {
                rwmutexTmp.get(in)
            }
        }()
    }
    w.Wait()
    fmt.Println("testRwmutexReadOnly cost:", time.Now().Sub(t1).String())
}

func testRwmutexWriteOnly(count int) {
    var w = &sync.WaitGroup{}
    var rwmutexTmp = newRwmutex(count)
    w.Add(gnum)
    t1 := time.Now()
    for i := 0; i < gnum; i++ {
        go func() {
            defer w.Done()
            for in := 0; in < num; in++ {
                rwmutexTmp.set(in, in)
            }
        }()
    }
    w.Wait()
    fmt.Println("testRwmutexWriteOnly cost:", time.Now().Sub(t1).String())
}

func testRwmutexWriteRead(count, div int) {
    var w = &sync.WaitGroup{}
    var rwmutexTmp = newRwmutex(count)
    w.Add(gnum)
    t1 := time.Now()
    for i := 0; i < gnum; i++ {
        if i%div != 0 {
            go func() {
                defer w.Done()
                for in := 0; in < num; in++ {
                    rwmutexTmp.get(in)
                }
            }()
        } else {
            go func() {
                defer w.Done()
                for in := 0; in < num; in++ {
                    rwmutexTmp.set(in, in)
                }
            }()
        }
    }
    w.Wait()
    fmt.Println("testRwmutexWriteRead cost:", time.Now().Sub(t1).String())
}

func testMutexReadOnly(count int) {
    var w = &sync.WaitGroup{}
    var mutexTmp = newMutex(count)
    w.Add(gnum)

    t1 := time.Now()
    for i := 0; i < gnum; i++ {
        go func() {
            defer w.Done()
            for in := 0; in < num; in++ {
                mutexTmp.get(in)
            }
        }()
    }
    w.Wait()
    fmt.Println("testMutexReadOnly cost:", time.Now().Sub(t1).String())
}

func testMutexWriteOnly(count int) {
    var w = &sync.WaitGroup{}
    var mutexTmp = newMutex(count)
    w.Add(gnum)

    t1 := time.Now()
    for i := 0; i < gnum; i++ {
        go func() {
            defer w.Done()
            for in := 0; in < num; in++ {
                mutexTmp.set(in, in)
            }
        }()
    }
    w.Wait()
    fmt.Println("testMutexWriteOnly cost:", time.Now().Sub(t1).String())
}

func testMutexWriteRead(count, div int) {
    var w = &sync.WaitGroup{}
    var mutexTmp = newMutex(count)
    w.Add(gnum)
    t1 := time.Now()
    for i := 0; i < gnum; i++ {
        if i%div != 0 {
            go func() {
                defer w.Done()
                for in := 0; in < num; in++ {
                    mutexTmp.get(in)
                }
            }()
        } else {
            go func() {
                defer w.Done()
                for in := 0; in < num; in++ {
                    mutexTmp.set(in, in)
                }
            }()
        }

    }
    w.Wait()
    fmt.Println("testMutexWriteRead cost:", time.Now().Sub(t1).String())
}

func testSyncMapReadOnly(count int) {
    var w = &sync.WaitGroup{}
    var mutexTmp = newSyncMap(count)
    w.Add(gnum)

    t1 := time.Now()
    for i := 0; i < gnum; i++ {
        go func() {
            defer w.Done()
            for in := 0; in < num; in++ {
                mutexTmp.Load(in)
            }
        }()
    }
    w.Wait()
    fmt.Println("testSyncMapReadOnly cost:", time.Now().Sub(t1).String())
}

func testSyncMapWriteOnly(count int) {
    var w = &sync.WaitGroup{}
    var mutexTmp = newSyncMap(count)
    w.Add(gnum)

    t1 := time.Now()
    for i := 0; i < gnum; i++ {
        go func() {
            defer w.Done()
            for in := 0; in < num; in++ {
                mutexTmp.Store(in, in)
            }
        }()
    }
    w.Wait()
    fmt.Println("testSyncMapWriteOnly cost:", time.Now().Sub(t1).String())
}

func testSyncMapWriteRead(count, div int) {
    var w = &sync.WaitGroup{}
    var mutexTmp = newSyncMap(count)
    w.Add(gnum)
    t1 := time.Now()
    for i := 0; i < gnum; i++ {
        if i%div != 0 {
            go func() {
                defer w.Done()
                for in := 0; in < num; in++ {
                    mutexTmp.Load(in)
                }
            }()
        } else {
            go func() {
                defer w.Done()
                for in := 0; in < num; in++ {
                    mutexTmp.Store(in, in)
                }
            }()
        }

    }
    w.Wait()
    fmt.Println("testSyncMapWriteRead cost:", time.Now().Sub(t1).String())
}

func newRwmutex(count int) *rwmutex {
    var t = &rwmutex{}
    t.mu = &sync.RWMutex{}
    t.ipmap = make(map[int]int, count)

    for i := 0; i < count; i++ {
        t.ipmap[i] = 0
    }
    return t
}

type rwmutex struct {
    mu    *sync.RWMutex
    ipmap map[int]int
}

func (t *rwmutex) get(i int) int {
    t.mu.RLock()
    defer t.mu.RUnlock()

    return t.ipmap[i]
}

func (t *rwmutex) set(k, v int) {
    t.mu.Lock()
    defer t.mu.Unlock()

    t.ipmap[k] = v
}

func newMutex(count int) *mutex {
    var t = &mutex{}
    t.mu = &sync.Mutex{}
    t.ipmap = make(map[int]int, count)

    for i := 0; i < count; i++ {
        t.ipmap[i] = 0
    }
    return t
}

func newSyncMap(count int) *sync.Map {
    var t = &sync.Map{}

    for i := 0; i < count; i++ {
        t.Store(i, 0)
    }
    return t
}

type mutex struct {
    mu    *sync.Mutex
    ipmap map[int]int
}

func (t *mutex) get(i int) int {
    t.mu.Lock()
    defer t.mu.Unlock()

    return t.ipmap[i]
}

func (t *mutex) set(k, v int) {
    t.mu.Lock()
    defer t.mu.Unlock()

    k = k % 100
    t.ipmap[k] = v
}

3.测试结果

//测试结果
//only read
testRwmutexReadOnly cost: 506.182734ms
testMutexReadOnly cost: 1.970860548s
testSyncMapReadOnly cost: 113.849084ms

//write and read
testRwmutexWriteRead cost: 1.827954707s
testMutexWriteRead cost: 2.074191088s
testSyncMapWriteOnly cost: 4.387804708s

//抽样写比例 1/5
//write and read
testRwmutexWriteRead cost: 1.139143888s
testMutexWriteRead cost: 1.965517324s
testSyncMapWriteRead cost: 188.517601ms

//抽样写比例 1/50
//write and read
testRwmutexWriteRead cost: 809.852228ms
testMutexWriteRead cost: 1.903433116s
testSyncMapWriteRead cost: 133.22511ms

//write only
testRwmutexWriteOnly cost: 2.917429869s
testMutexWriteOnly cost: 2.245351033s
testSyncMapWriteRead cost: 315.201658ms

4.结论

只读场景:sync.map > rwmutex >> mutex
读写场景(边读边写):rwmutex > mutex >> sync.map
读写场景(读80% 写20%):sync.map > rwmutex > mutex
读写场景(读98% 写2%):sync.map > rwmutex >> mutex
只写场景:sync.map >> mutex > rwmutex

5.个人建议和使用习惯

一般来讲大部分面临的都是读写场景,关键在于读写的比例。
考虑到编码和代码可读性,如果存储复杂结构体,我仍然倾向于rwmutex;如果是简单结构类型,我倾向选择sync.map。

你可能感兴趣的:(goalng1.14不同场景下sync.Map、Mutex、RWMutex锁性能测试对比)