- 使用 Tavily 搜索 API 获取实时精确搜索结果
fgayif
python数据库开发语言
技术背景介绍Tavily搜索API是一个专为AI代理(如大型语言模型)而设计的搜索引擎。它能够快速提供实时、准确且事实性强的搜索结果。这使得Tavily成为可以嵌入到AI应用中的理想工具,提升信息获取的效率和准确性。核心原理解析Tavily搜索API提供了异步的原生调用方式,可以返回包括标题、URL、内容和答案在内的数据。API可以根据需求设置不同的搜索深度和结果数量。通过与其他语言模型(如Ope
- Java动态代理模式深度解析
Vic10101
Java性能优化开发实战项目总结java代理模式开发语言
1.动态代理基础1.1核心组件Proxy类:动态生成代理对象的工厂类,核心方法为newProxyInstance()。InvocationHandler接口:代理逻辑的处理器,所有方法调用会转发到其invoke()方法。1.2实现步骤定义接口:代理基于接口实现。publicinterfaceUserService{voidaddUser(Stringusername);}实现类(真实对象):pub
- 详解离线安装Python库
爱编程的喵喵
Python基础课程python离线安装requirements
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理解,而且能够帮助新手快速入门。 本文主要介绍了详解离线安装Python库,希望能对
- YOLO11改进-模块-引入频率谱动态聚合模块FSDA 去除噪声
一勺汤
YOLOv11模型改进系列目标检测魔改模块YOLOYOLOv11YOLOv11改进改进
在图像去雾领域,深度学习在白天图像去雾方面成果显著,但夜间雾图研究较少。夜间雾图面临诸多挑战,其中包括雾、辉光和噪声因多个低强度有源彩色光源而具有复杂特性,以及模拟与真实数据的域差异导致的亮度问题。为解决这些,我们使用FSDA模块,处理频率不一致特性。FSDA先对频谱信息聚合,再计算通道权重并应用,最后映射回空间域,以此优化频谱信息,使模型更好处理复杂干扰。本文将其与YOLOv11相结合,增强YO
- IMX335摄像头驱动注册分析
单片机嵌入式硬件
设备树设备树中对imx335设备摄像头节点的描述信息:&i2c1{#&i2c1:表示使用I2C总线1,这通常在设备树中用于引用特定的I2C控制器status="okay";#I2C总线1已启用并且工作正常clock-frequency=;#设置I2C总线的频率为400kHz,即工作在快速模式。该频率在sensor数据手册指定imx335:imx335@1a{#imx335的设备节点,@1a表示I2
- 基于多头注意机制的多尺度特征融合的GCN的序列数据(功率预测、故障诊断)模型及代码详解
清风AI
深度学习算法详解及代码复现人工智能神经网络深度学习pythoncondapippandas
GCN基础在深度学习领域中,图卷积网络(GCN)是一种强大的图数据处理工具。它将卷积操作扩展到图结构上,能够有效捕捉图中节点之间的关系信息。GCN的核心思想是通过聚合邻居节点的特征来更新目标节点的表示,这种局部聚合机制使得GCN能够学习到图的拓扑结构和节点属性。GCN的主要构成要素包括节点特征矩阵、邻接矩阵和卷积核。通过多次迭代,GCN可以逐步学习到图中节点的高阶表示,为后续的分类、预测等任务提供
- 【第9章】“基础工作流”怎么用?(图生图/局部重绘/VAE/更多基础工作流)ComfyUI基础入门教程
聚梦小课堂
ComfyUI基础入门课comfyui基础教程工作流教程AI绘画教程AI作画人工智能stablediffusion
引言学到这里,大家是不是会比较纠结,好像还在持续学习新的东西,未来还有多少基础的东西要学习,才能正常使用ComfyUI呢?这其实需要转变一个心态。AI绘画还处于一个快速迭代的过程,隔三岔五的就会有很多新技术、新模型出现,ComfyUI目前同样处于一个快速更新的阶段,从更新记录上也可以看到,几乎每一两天都会更新新版本。同样,生态的各种自定义节点也在持续更新。所以,不可能有个教程把所有未来会用到的知识
- YOLO魔改之频率分割模块(FDM)
清风AI
YOLO算法魔改系列YOLO人工智能计算机视觉目标检测python深度学习
目标检测原理目标检测是一种将目标分割和识别相结合的图像处理技术,旨在从图像中定位并识别特定目标。深度学习方法,如FasterR-CNN和YOLO系列,已成为主流解决方案。这些方法通常采用两阶段或单阶段策略,通过卷积神经网络(CNN)提取特征并进行分类和定位。在小目标检测中,为克服分辨率低和特征不明显的问题,模型设计中会特别注重特征融合和多尺度处理,以增强对小目标的感知能力。YOLOv8基础YOLO
- 基于协同过滤推荐算法的景点票务数据系统(python-计算机毕设)
计算机程序设计(接毕设)
推荐算法机器学习毕业设计python人工智能
摘要IABSTRACTII第1章引言1研究背景及意义1研究背景1研究意义1国内外研究现状2智慧旅游3旅游大数据3研究内容4本章小结4第2章相关技术概述5基于内容的推荐算法5基于内容的推荐算法原理5基于内容的推荐算法实现5协同过滤推荐算法6协同过滤算法原理6协同过滤算法实现7SpringBoot框架9SpringBoot简介9SpringBoot特性10SpringBoot工作原理10Vue.js框
- 鸿蒙保姆级教学
冬冬小圆帽
harmonyos华为
鸿蒙(HarmonyOS)是华为推出的一款面向全场景的分布式操作系统,支持手机、平板、智能穿戴、智能家居、车载设备等多种设备。鸿蒙系统的核心特点是分布式架构、一次开发多端部署和高性能。以下是从入门到大神级别的鸿蒙开发深度分析,结合代码示例,帮助你逐步掌握鸿蒙开发。1.鸿蒙开发入门1.1环境搭建鸿蒙编译器安装运行教程安装DevEcoStudio:下载并安装DevEcoStudio,这是鸿蒙官方提供的
- PyTorch模型训练实战指南:掌握动态图特性与工业级部署技巧
lmtealily
pytorch人工智能python
前言在深度学习领域,PyTorch凭借其动态计算图、高效的自动微分系统及高度Pythonic的设计哲学,已成为学术界与工业界的主流框架。其即时执行模式大幅简化了模型调试流程,而灵活的模块化设计则为复杂模型的构建提供了坚实基础。然而,从实验原型到工业级部署的全链路实践中,开发者仍需系统性掌握框架核心特性与工程化技巧。本文以实战为导向,深入剖析PyTorch动态图机制与自动微分原理,详解从数据预处理、
- 固态电池行业深度研究报告:技术变革与市场展望
萧十一郎@
知识科普大数据人工智能
目录一、引言1.1研究背景与目的1.2研究方法与数据来源二、固态电池概述2.1定义与分类2.1.1定义2.1.2分类2.2工作原理2.3发展历程三、固态电池技术优势与挑战3.1技术优势3.1.1高安全性3.1.2高能量密度3.1.3长循环寿命3.2技术挑战3.2.1离子电导率低3.2.2固-固界面问题3.2.3锂枝晶生长3.2.4成本高昂四、固态电池材料体系与技术路线4.1固态电解质材料4.1.1
- 【数学建模】层次分析法(AHP)详解及其应用
烟锁池塘柳0
数学建模数学建模
层次分析法(AHP)详解及其应用引言在现实生活和工作中,我们经常面临复杂的决策问题,这些问题通常涉及多个评价准则,且各准则之间可能存在相互影响。如何在这些复杂因素中做出合理的决策?层次分析法(AnalyticHierarchyProcess,AHP)作为一种系统、灵活的多准则决策方法,为我们提供了科学的决策工具。文章目录层次分析法(AHP)详解及其应用引言什么是层次分析法?层次分析法的基本原理层次
- 【网易雷火秋招】前端面经分享
编程自学-领绿学长
前端求职招聘面试
网易网易雷火是国内一流且最有创新力的游戏研发团队,是网易杭州的第一个游戏工作室。雷火开创性的打造了《逆水寒》、《永劫无间》、《倩女幽魂》、《全明星街球派对》等一众爆款游戏;并在二次元、FPS、主机游戏等方向上持续探索,《代号:无限大》等在研项目收到玩家广泛关注。与此同时,我们与全球合作伙伴一起共同构建开放、协同、共荣共生的产业生态,致力于让中国游戏走出去,让世界听见雷火声音。雷火还拥有国内专业从事
- DeepSeek+知网研学轻松搞定研究生选题
AI新视界
AI学术学术软件推荐AI工具AI学术学习人工智能学术
选题是研究生学术研究的起点,一个好的选题不仅决定了研究的方向,还直接影响研究的深度和成果。本文将详细介绍如何结合DeepSeek大模型与知网研学,帮助研究生高效完成选题工作。一、选题的重要性与挑战选题的重要性:选题是研究的核心,决定了研究的创新性和可行性。好的选题能够为后续研究提供明确的方向和动力。选题的挑战:如何从海量文献中找到有价值的研究方向?如何判断选题的创新性和研究价值?如何确保选题的可行
- PyTorch 深度学习实战(19):离线强化学习与 Conservative Q-Learning (CQL) 算法
进取星辰
PyTorch深度学习实战深度学习pytorch算法
在上一篇文章中,我们探讨了分布式强化学习与IMPALA算法,展示了如何通过并行化训练提升强化学习的效率。本文将聚焦离线强化学习(OfflineRL)这一新兴方向,并实现ConservativeQ-Learning(CQL)算法,利用Minari提供的静态数据集训练安全的强化学习策略。一、离线强化学习与CQL原理1.离线强化学习的特点无需环境交互:直接从预收集的静态数据集学习数据效率高:复用历史经验
- 【考研计算机网络】课堂笔记1 第一章 概述
刘鑫磊up
#操作系统计算机网络计算机网络
文章目录:一:计算机网络的概述1.计算机网络的基本概念2.计算机网络的组成3.计算机网络的功能4.计算机网络的分类4.1分布范围分类4.2传输技术分类4.3按照拓扑结构分类4.4按照使用者分类4.5按照传输介质分类二:计算机网络的标准化工作及相关组织三:计算机网络的性能指标速率kb千Mb兆Gb吉Tb太的单位换算存储容量KBMBGBTB的单位换数四:网络分层五:计算机网络协议、接口、服务的概念1.协
- 项目经理的“汇报力”修炼:如何快速打造让领导、客户眼前一亮的方案?
在项目管理领域,流传着一句话:“干得好不如说得好,说得好不如呈现得好。”项目经理作为“资源整合者”和“信息枢纽”,70%以上的工作本质是沟通与汇报——向上争取资源,向下传递目标,向外管理客户预期。能否快速产出逻辑清晰、价值聚焦的汇报方案,直接决定了项目的推进效率与个人职业发展天花板。一、项目经理的工作本质:用汇报“撬动”资源项目经理的日常不是埋头写代码或画图纸,而是通过系统性表达解决三类核心问题:
- 软件研发项目管理软件有哪些?8Manage PM等5款产品深度对比
Sadie_d
软件研发
软件研发项目的复杂性往往让团队面临诸多挑战:需求变更频繁、进度难以把控、资源分配不均、团队协作效率低下……这些问题如果得不到有效管理,不仅会拖延项目周期,还可能导致成本超支甚至项目失败。为了应对这些挑战,软件研发项目管理系统应运而生。它通过集成化的工具和科学的方法论,帮助研发团队提升效率、优化流程、确保项目按时交付。本文将探讨项目管理系统对软件研发团队的具体好处,并介绍5款主流产品助您找到适合的解
- 【硬核实战】ETCD+AI智能调度深度整合!从架构设计到调优避坑,手把手教你打造高可用调度系统!
码农突围计划
人工智能etcd大数据
一、核心架构设计:ETCD如何赋能AI调度?架构图:[AI调度引擎]←实时数据→[ETCD集群]↓决策指令[执行层(车辆/物流/交通设备)]核心角色:ETCD:存储调度策略、节点状态、任务队列、实时环境数据(如交通流量、天气)AI模型:基于ETCD数据动态决策(如路径规划、资源分配)调度执行层:接收ETCD下发的指令并执行(如车辆调度、信号灯控制)优势:强一致性:ETCD的Raft协议确保调度策略
- 从代码到蓝图:开发者转型技术型项目经理的破局之路
一、开发者面临的转型临界点技术型职业瓶颈的四个维度案例:某大厂P7工程师年薪突破80万后陷入停滞,发现35岁后晋升通道收窄至3%技术天花板困境当技术深度达到可解决90%业务需求时,剩余10%的突破需要投入指数级增长的时间成本业务理解断层某金融系统开发者耗时3月重构代码,上线后才发现业务方早已变更需求方向沟通能力边际递减技术团队日均处理跨部门沟通耗时2.3小时,其中62%的时间消耗在需求理解错位上职
- 如何快速提取PDF中的图片?这款免费工具让你事半功倍!
10211234567890
pdf编辑pdfpdf提取图片pdf数据提取pdf提取
在日常学习和工作中,PDF文件几乎成了我们处理文档的标配。但你是否遇到过这样的烦恼:想从PDF里提取图片,却只能手动截图,效率低还容易模糊?尤其是面对几十页的复杂文档,简直让人抓狂……别急!今天分享一个亲测高效的解决方案——完全免费、无需注册、一键提取PDF图片的工具,3分钟搞定难题!为什么你需要专业的PDF图片提取工具?手动截图太麻烦:图片位置分散、尺寸不一,截图后还需裁剪整理,耗时耗力。图片质
- 深度解析Java中的代码分支策略规划:掌握GitFlow与GitHub Flow的艺术
墨夶
Java学习资料2javagithub开发语言
在这个技术日新月异的时代,每一个开发者都在寻找提高效率、减少错误并优化团队协作的方法。而当涉及到代码管理时,选择正确的分支策略至关重要。今天,我们将深入探讨如何在Java项目中应用两种流行的分支策略——GitFlow和GitHubFlow,并通过详尽的示例代码来展示它们的实际运用。1.分支管理策略概览分支管理策略不仅帮助团队成员之间进行有效的沟通,还确保了代码库的健康状态。无论是小型创业公司还是大
- https证书获取的方法及好处
获取HTTPS证书的多种方法及其优势✨在现代互联网环境中,HTTPS已成为保障网站安全的基本标准。获取HTTPS证书不仅能提升网站的安全性,还能增强用户信任度和提升搜索引擎排名。本文将详细介绍获取HTTPS证书的几种常见方法及其各自的优势,并通过图表和流程图帮助理解其工作原理。获取HTTPS证书的方法️1.购买商业证书购买商业证书是获取HTTPS证书的传统方式,适用于需要高信任度和额外保障的企业和
- C++ 结构型设计模式
十七12138
C++c++设计模式
C++设计模式自己理解整理笔记结构型-适配器模式适配器模式(AdapterPattern)是一种结构型设计模式,它的主要作用是将一个类的接口转换成客户希望的另一个接口,使得原本由于接口不兼容而不能一起工作的那些类可以一起工作。适配器模式主要有两种实现方式:类适配器模式和对象适配器模式。类适配器类适配器通过多重继承实现,这种方式利用了继承优点直接调用:由于适配器类继承了被适配类,所以可以直接调用被适
- 一切皆是映射:DQN训练加速技术:分布式训练与GPU并行
AI天才研究院
计算AI大模型企业级应用开发实战ChatGPT计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1深度强化学习的兴起近年来,深度强化学习(DeepReinforcementLearning,DRL)在游戏、机器人控制、自然语言处理等领域取得了令人瞩目的成就。作为一种结合深度学习和强化学习的强大技术,DRL能够使智能体在与环境交互的过程中学习最优策略,从而实现自主决策和控制。1.2DQN算法及其局限性深度Q网络(DeepQ-Network,DQN)是DRL的一种经典算法,它利用
- Unity3D手游多分辨率适配深度解决方案
晴空了无痕
项目解决方案屏幕适配
一、适配核心问题剖析当前移动端设备分辨率呈现多元化发展趋势,主流设备分辨率跨度从720P到4K级别,屏幕宽高比包含16:9、18:9、19.5:9、21:9等多种形态。适配难点主要体现在:UI元素错位:传统固定锚点布局在不同宽高比下出现显示异常画面比例失调:等比缩放导致屏幕空间浪费或内容裁切性能与效果平衡:高分辨率设备资源消耗与低端设备性能瓶颈异形屏适配:刘海屏、挖孔屏等特殊屏幕形态的兼容处理二、
- 大规模语言模型从理论到实践 分布式训练的集群架构
AI智能涌现深度研究
DeepSeekR1&大数据AI人工智能Python入门实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大规模语言模型从理论到实践分布式训练的集群架构作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来随着深度学习技术的飞速发展,大规模语言模型(LargeLanguageModels,LLMs)在自然语言处理(NaturalLanguageProcessing,NLP)领域取得了突破性进展。LLMs,如BERT、GPT-3等,通
- 友思特新品 | OCT-3D断层扫描成像测量系统OQ StrataScope升级2.0型号!
友思特 机器视觉与光电
机器视觉3dOCT光学相干断层扫描
ProductUpdate!友思特高精度OCT-3D断层扫描成像测量系统推出OQStrataScope升级2.0/R型号!同时,原有的OQStrataScope1.0型号产品将暂时停产。OCT新品简介OQStrataScope2.0是仅用于研究和工业领域应用的光学相干断层扫描系统,可针对高度散射的样品介质增加极深的成像深度。相较于OQLabScope系列,OQStrataScope中心波长可达13
- 浏览器开发者工具深度调试指南:从入门到高阶技巧
109702008
编程网络人工智能网络
浏览器开发者工具(DevTools)是现代前端工程师的"瑞士军刀",本文将系统解析其核心功能与实战技巧,助您掌握高效调试的终极奥义。一、基础操作与核心功能1.1工具启动方式快捷键:F12(Win/Linux)|Cmd+Opt+I(Mac)右键菜单:网页任意位置右键→检查(Inspect)移动端调试:启用设备模式(Ctrl+Shift+M)1.2核心面板全景图面板名称核心功能快捷键切换Element
- ios内付费
374016526
ios内付费
近年来写了很多IOS的程序,内付费也用到不少,使用IOS的内付费实现起来比较麻烦,这里我写了一个简单的内付费包,希望对大家有帮助。
具体使用如下:
这里的sender其实就是调用者,这里主要是为了回调使用。
[KuroStoreApi kuroStoreProductId:@"产品ID" storeSender:self storeFinishCallBa
- 20 款优秀的 Linux 终端仿真器
brotherlamp
linuxlinux视频linux资料linux自学linux教程
终端仿真器是一款用其它显示架构重现可视终端的计算机程序。换句话说就是终端仿真器能使哑终端看似像一台连接上了服务器的客户机。终端仿真器允许最终用户用文本用户界面和命令行来访问控制台和应用程序。(LCTT 译注:终端仿真器原意指对大型机-哑终端方式的模拟,不过在当今的 Linux 环境中,常指通过远程或本地方式连接的伪终端,俗称“终端”。)
你能从开源世界中找到大量的终端仿真器,它们
- Solr Deep Paging(solr 深分页)
eksliang
solr深分页solr分页性能问题
转载请出自出处:http://eksliang.iteye.com/blog/2148370
作者:eksliang(ickes) blg:http://eksliang.iteye.com/ 概述
长期以来,我们一直有一个深分页问题。如果直接跳到很靠后的页数,查询速度会比较慢。这是因为Solr的需要为查询从开始遍历所有数据。直到Solr的4.7这个问题一直没有一个很好的解决方案。直到solr
- 数据库面试题
18289753290
面试题 数据库
1.union ,union all
网络搜索出的最佳答案:
union和union all的区别是,union会自动压缩多个结果集合中的重复结果,而union all则将所有的结果全部显示出来,不管是不是重复。
Union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序;
Union All:对两个结果集进行并集操作,包括重复行,不进行排序;
2.索引有哪些分类?作用是
- Android TV屏幕适配
酷的飞上天空
android
先说下现在市面上TV分辨率的大概情况
两种分辨率为主
1.720标清,分辨率为1280x720.
屏幕尺寸以32寸为主,部分电视为42寸
2.1080p全高清,分辨率为1920x1080
屏幕尺寸以42寸为主,此分辨率电视屏幕从32寸到50寸都有
适配遇到问题,已1080p尺寸为例:
分辨率固定不变,屏幕尺寸变化较大。
如:效果图尺寸为1920x1080,如果使用d
- Timer定时器与ActionListener联合应用
永夜-极光
java
功能:在控制台每秒输出一次
代码:
package Main;
import javax.swing.Timer;
import java.awt.event.*;
public class T {
private static int count = 0;
public static void main(String[] args){
- Ubuntu14.04系统Tab键不能自动补全问题解决
随便小屋
Ubuntu 14.04
Unbuntu 14.4安装之后就在终端中使用Tab键不能自动补全,解决办法如下:
1、利用vi编辑器打开/etc/bash.bashrc文件(需要root权限)
sudo vi /etc/bash.bashrc
接下来会提示输入密码
2、找到文件中的下列代码
#enable bash completion in interactive shells
#if
- 学会人际关系三招 轻松走职场
aijuans
职场
要想成功,仅有专业能力是不够的,处理好与老板、同事及下属的人际关系也是门大学问。如何才能在职场如鱼得水、游刃有余呢?在此,教您简单实用的三个窍门。
第一,多汇报
最近,管理学又提出了一个新名词“追随力”。它告诉我们,做下属最关键的就是要多请示汇报,让上司随时了解你的工作进度,有了新想法也要及时建议。不知不觉,你就有了“追随力”,上司会越来越了解和信任你。
第二,勤沟通
团队的力
- 《O2O:移动互联网时代的商业革命》读书笔记
aoyouzi
读书笔记
移动互联网的未来:碎片化内容+碎片化渠道=各式精准、互动的新型社会化营销。
O2O:Online to OffLine 线上线下活动
O2O就是在移动互联网时代,生活消费领域通过线上和线下互动的一种新型商业模式。
手机二维码本质:O2O商务行为从线下现实世界到线上虚拟世界的入口。
线上虚拟世界创造的本意是打破信息鸿沟,让不同地域、不同需求的人
- js实现图片随鼠标滚动的效果
百合不是茶
JavaScript滚动属性的获取图片滚动属性获取页面加载
1,获取样式属性值
top 与顶部的距离
left 与左边的距离
right 与右边的距离
bottom 与下边的距离
zIndex 层叠层次
例子:获取左边的宽度,当css写在body标签中时
<div id="adver" style="position:absolute;top:50px;left:1000p
- ajax同步异步参数async
bijian1013
jqueryAjaxasync
开发项目开发过程中,需要将ajax的返回值赋到全局变量中,然后在该页面其他地方引用,因为ajax异步的原因一直无法成功,需将async:false,使其变成同步的。
格式:
$.ajax({ type: 'POST', ur
- Webx3框架(1)
Bill_chen
eclipsespringmaven框架ibatis
Webx是淘宝开发的一套Web开发框架,Webx3是其第三个升级版本;采用Eclipse的开发环境,现在支持java开发;
采用turbine原型的MVC框架,扩展了Spring容器,利用Maven进行项目的构建管理,灵活的ibatis持久层支持,总的来说,还是一套很不错的Web框架。
Webx3遵循turbine风格,velocity的模板被分为layout/screen/control三部
- 【MongoDB学习笔记五】MongoDB概述
bit1129
mongodb
MongoDB是面向文档的NoSQL数据库,尽量业界还对MongoDB存在一些质疑的声音,比如性能尤其是查询性能、数据一致性的支持没有想象的那么好,但是MongoDB用户群确实已经够多。MongoDB的亮点不在于它的性能,而是它处理非结构化数据的能力以及内置对分布式的支持(复制、分片达到的高可用、高可伸缩),同时它提供的近似于SQL的查询能力,也是在做NoSQL技术选型时,考虑的一个重要因素。Mo
- spring/hibernate/struts2常见异常总结
白糖_
Hibernate
Spring
①ClassNotFoundException: org.aspectj.weaver.reflect.ReflectionWorld$ReflectionWorldException
缺少aspectjweaver.jar,该jar包常用于spring aop中
②java.lang.ClassNotFoundException: org.sprin
- jquery easyui表单重置(reset)扩展思路
bozch
formjquery easyuireset
在jquery easyui表单中 尚未提供表单重置的功能,这就需要自己对其进行扩展。
扩展的时候要考虑的控件有:
combo,combobox,combogrid,combotree,datebox,datetimebox
需要对其添加reset方法,reset方法就是把初始化的值赋值给当前的组件,这就需要在组件的初始化时将值保存下来。
在所有的reset方法添加完毕之后,就需要对fo
- 编程之美-烙饼排序
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
/*
*《编程之美》的思路是:搜索+剪枝。有点像是写下棋程序:当前情况下,把所有可能的下一步都做一遍;在这每一遍操作里面,计算出如果按这一步走的话,能不能赢(得出最优结果)。
*《编程之美》上代码有很多错误,且每个变量的含义令人费解。因此我按我的理解写了以下代码:
*/
- Struts1.X 源码分析之ActionForm赋值原理
chenbowen00
struts
struts1在处理请求参数之前,首先会根据配置文件action节点的name属性创建对应的ActionForm。如果配置了name属性,却找不到对应的ActionForm类也不会报错,只是不会处理本次请求的请求参数。
如果找到了对应的ActionForm类,则先判断是否已经存在ActionForm的实例,如果不存在则创建实例,并将其存放在对应的作用域中。作用域由配置文件action节点的s
- [空天防御与经济]在获得充足的外部资源之前,太空投资需有限度
comsci
资源
这里有一个常识性的问题:
地球的资源,人类的资金是有限的,而太空是无限的.....
就算全人类联合起来,要在太空中修建大型空间站,也不一定能够成功,因为资源和资金,技术有客观的限制....
&
- ORACLE临时表—ON COMMIT PRESERVE ROWS
daizj
oracle临时表
ORACLE临时表 转
临时表:像普通表一样,有结构,但是对数据的管理上不一样,临时表存储事务或会话的中间结果集,临时表中保存的数据只对当前
会话可见,所有会话都看不到其他会话的数据,即使其他会话提交了,也看不到。临时表不存在并发行为,因为他们对于当前会话都是独立的。
创建临时表时,ORACLE只创建了表的结构(在数据字典中定义),并没有初始化内存空间,当某一会话使用临时表时,ORALCE会
- 基于Nginx XSendfile+SpringMVC进行文件下载
denger
应用服务器Webnginx网络应用lighttpd
在平常我们实现文件下载通常是通过普通 read-write方式,如下代码所示。
@RequestMapping("/courseware/{id}")
public void download(@PathVariable("id") String courseID, HttpServletResp
- scanf接受char类型的字符
dcj3sjt126com
c
/*
2013年3月11日22:35:54
目的:学习char只接受一个字符
*/
# include <stdio.h>
int main(void)
{
int i;
char ch;
scanf("%d", &i);
printf("i = %d\n", i);
scanf("%
- 学编程的价值
dcj3sjt126com
编程
发一个人会编程, 想想以后可以教儿女, 是多么美好的事啊, 不管儿女将来从事什么样的职业, 教一教, 对他思维的开拓大有帮助
像这位朋友学习:
http://blog.sina.com.cn/s/articlelist_2584320772_0_1.html
VirtualGS教程 (By @林泰前): 几十年的老程序员,资深的
- 二维数组(矩阵)对角线输出
飞天奔月
二维数组
今天在BBS里面看到这样的面试题目,
1,二维数组(N*N),沿对角线方向,从右上角打印到左下角如N=4: 4*4二维数组
{ 1 2 3 4 }
{ 5 6 7 8 }
{ 9 10 11 12 }
{13 14 15 16 }
打印顺序
4
3 8
2 7 12
1 6 11 16
5 10 15
9 14
13
要
- Ehcache(08)——可阻塞的Cache——BlockingCache
234390216
并发ehcacheBlockingCache阻塞
可阻塞的Cache—BlockingCache
在上一节我们提到了显示使用Ehcache锁的问题,其实我们还可以隐式的来使用Ehcache的锁,那就是通过BlockingCache。BlockingCache是Ehcache的一个封装类,可以让我们对Ehcache进行并发操作。其内部的锁机制是使用的net.
- mysqldiff对数据库间进行差异比较
jackyrong
mysqld
mysqldiff该工具是官方mysql-utilities工具集的一个脚本,可以用来对比不同数据库之间的表结构,或者同个数据库间的表结构
如果在windows下,直接下载mysql-utilities安装就可以了,然后运行后,会跑到命令行下:
1) 基本用法
mysqldiff --server1=admin:12345
- spring data jpa 方法中可用的关键字
lawrence.li
javaspring
spring data jpa 支持以方法名进行查询/删除/统计。
查询的关键字为find
删除的关键字为delete/remove (>=1.7.x)
统计的关键字为count (>=1.7.x)
修改需要使用@Modifying注解
@Modifying
@Query("update User u set u.firstna
- Spring的ModelAndView类
nicegege
spring
项目中controller的方法跳转的到ModelAndView类,一直很好奇spring怎么实现的?
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* yo
- 搭建 CentOS 6 服务器(13) - rsync、Amanda
rensanning
centos
(一)rsync
Server端
# yum install rsync
# vi /etc/xinetd.d/rsync
service rsync
{
disable = no
flags = IPv6
socket_type = stream
wait
- Learn Nodejs 02
toknowme
nodejs
(1)npm是什么
npm is the package manager for node
官方网站:https://www.npmjs.com/
npm上有很多优秀的nodejs包,来解决常见的一些问题,比如用node-mysql,就可以方便通过nodejs链接到mysql,进行数据库的操作
在开发过程往往会需要用到其他的包,使用npm就可以下载这些包来供程序调用
&nb
- Spring MVC 拦截器
xp9802
spring mvc
Controller层的拦截器继承于HandlerInterceptorAdapter
HandlerInterceptorAdapter.java 1 public abstract class HandlerInterceptorAdapter implements HandlerIntercep