struct json tag主要在struct与json数据转换的过程(Marshal/Unmarshal)中使用。
json的tag格式如下:
Key type `json:"name,opt1,opt2,opts..."`
说明:
","
),默认使用字段名。opt1
、opt2
等项为可选项,必须使用有限的几个限定的opt的一个或组合,如"omitempty"
、"string"
,使用非限定的opt会发生错误。我们先介绍下源码文档中提供的几种使用方式:
因Marshal与Unmarshal是相反的过程,两者规则是一致的,以下介绍中仅说明了Marshal时的处理。
Field int // “Filed”:0
不指定tag,默认使用变量名称。转换为json时,key为Filed。
Field int
json:"-"
//注意:必须为"-",不能带有opts
转换时不处理。
Field int
json:"myName"
// “myName”:0
转换为json时,key为myName
Field int
json:",omitempty"
转换为json时,值为零值则忽略,否则key为myName
Field int
json:"myName,omitempty"
转换为json时,值为零值则忽略,否则key为myName
Field int
json:"-,"
// “-”:0
此项与忽略的区别在于多了个”,“。
以上提到的用法都是常见的,这个比较特殊。
"string"仅适用于字符串、浮点、整数或布尔类型,表示的意思是:将字段的值转换为字符串;解析时,则是将字符串解析为指定的类型。主要用于与javascript通信时数据的转换。
注意:
仅且仅有"string",没有int、number之类的opt。即带"string" opt的字段,编码时仅能将字符串、浮点、整数或布尔类型转换为string类型,反之则不然;解码时可以将string转换为其他类型,反之不然。因为"string"有限制。
Int64String int64
json:",string"
// “Int64String”:“0”
“string” opt的使用可以在Marshal/Unmarshal时自动进行数据类型的转换,减少了手动数据转换的麻烦,但是一定要注意使用的范围,对不满足的类型使用,是会报错的。
猜下对string使用"string" opt的结果会是如何呢?
Int64String string
json:",string"
我们在了解源码后解答。
一切的使用方式肯定在设计时就已限定,我们现在看看源码中的处理过程。
在看实现的过程中,可以思考下使用的方式对不对,还有要注意的地方吗?
对某些地方非常好的实现思路,我们也可以借鉴下,对以后的编程学习大有裨益。
此处为了简洁,具体调用过程略过不讲,直接查看核心代码部分,有兴趣的话,可以查看下完整过程。
在typeFields中详细的对上面提到的各种用法的tag做了处理,处理后的数据存入fileds,最后在进行编码。
// typeFields returns a list of fields that JSON should recognize for the given type.
// The algorithm is breadth-first search over the set of structs to include - the top struct
// and then any reachable anonymous structs.
func typeFields(t reflect.Type) structFields {
// Anonymous fields to explore at the current level and the next.
current := []field{}
next := []field{{typ: t}}
// Count of queued names for current level and the next.
var count, nextCount map[reflect.Type]int
// Types already visited at an earlier level.
visited := map[reflect.Type]bool{}
// Fields found.
var fields []field
// Buffer to run HTMLEscape on field names.
var nameEscBuf bytes.Buffer
for len(next) > 0 {
current, next = next, current[:0]
count, nextCount = nextCount, map[reflect.Type]int{}
for _, f := range current {
if visited[f.typ] {//已处理的过类型跳过
continue
}
visited[f.typ] = true
// Scan f.typ for fields to include.
for i := 0; i < f.typ.NumField(); i++ {
sf := f.typ.Field(i)
isUnexported := sf.PkgPath != ""
if sf.Anonymous {//内嵌类型的处理
t := sf.Type
if t.Kind() == reflect.Ptr {
t = t.Elem()
}
if isUnexported && t.Kind() != reflect.Struct {
// Ignore embedded fields of unexported non-struct types.
continue//非struct结构的不能导出的key直接跳过
}
// Do not ignore embedded fields of unexported struct types
// since they may have exported fields.
} else if isUnexported {
// Ignore unexported non-embedded fields.
continue//不能导出的key直接跳过
}
tag := sf.Tag.Get("json")
if tag == "-" {
continue//tag为"-"直接跳过
}
name, opts := parseTag(tag)
if !isValidTag(name) {
name = ""//包含特殊字符的无效name
}
index := make([]int, len(f.index)+1)
copy(index, f.index)
index[len(f.index)] = i
ft := sf.Type
if ft.Name() == "" && ft.Kind() == reflect.Ptr {
// Follow pointer.
ft = ft.Elem()
}
// Only strings, floats, integers, and booleans can be quoted.
quoted := false
if opts.Contains("string") {//此处为"string" opt的特殊处理,支持的类型如下:
switch ft.Kind() {
case reflect.Bool,
reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64,
reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr,
reflect.Float32, reflect.Float64,
reflect.String:
quoted = true
}
}
// Record found field and index sequence.
if name != "" || !sf.Anonymous || ft.Kind() != reflect.Struct {
tagged := name != ""
if name == "" {
name = sf.Name//未指定或者指定name无效的使用原field的name
}
field := field{
name: name,
tag: tagged,
index: index,
typ: ft,
omitEmpty: opts.Contains("omitempty"),//omitempty确认
quoted: quoted,//是否支持"string" opt
}
field.nameBytes = []byte(field.name)
field.equalFold = foldFunc(field.nameBytes)
// Build nameEscHTML and nameNonEsc ahead of time.
//两种格式的构建
nameEscBuf.Reset()
nameEscBuf.WriteString(`"`)
HTMLEscape(&nameEscBuf, field.nameBytes)
nameEscBuf.WriteString(`":`)
field.nameEscHTML = nameEscBuf.String()
field.nameNonEsc = `"` + field.name + `":`
fields = append(fields, field)//存入fields
if count[f.typ] > 1 {
// If there were multiple instances, add a second,
// so that the annihilation code will see a duplicate.
// It only cares about the distinction between 1 or 2,
// so don't bother generating any more copies.
fields = append(fields, fields[len(fields)-1])
}
continue
}
// Record new anonymous struct to explore in next round.
nextCount[ft]++
if nextCount[ft] == 1 {
next = append(next, field{name: ft.Name(), index: index, typ: ft})
}
}
}
}
...
for i := range fields {
f := &fields[i]
f.encoder = typeEncoder(typeByIndex(t, f.index))//设置fields的encoder
}
nameIndex := make(map[string]int, len(fields))
for i, field := range fields {
nameIndex[field.name] = i
}
return structFields{fields, nameIndex}
}
func newStructEncoder(t reflect.Type) encoderFunc {
se := structEncoder{fields: cachedTypeFields(t)}
return se.encode
}
func (se structEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
next := byte('{')
FieldLoop:
for i := range se.fields.list {
f := &se.fields.list[i]
// Find the nested struct field by following f.index.
fv := v
for _, i := range f.index {
if fv.Kind() == reflect.Ptr {
if fv.IsNil() {
continue FieldLoop
}
fv = fv.Elem()
}
fv = fv.Field(i)
}
if f.omitEmpty && isEmptyValue(fv) {//"omitempty"的忽略处理,需要值为零值
continue
}
e.WriteByte(next)
next = ','
if opts.escapeHTML {
e.WriteString(f.nameEscHTML)
} else {
e.WriteString(f.nameNonEsc)
}
opts.quoted = f.quoted
f.encoder(e, fv, opts)//根据具体类型的编码处理
}
if next == '{' {
e.WriteString("{}")
} else {
e.WriteByte('}')
}
}
以下以int类型intEncoder为例:
func intEncoder(e *encodeState, v reflect.Value, opts encOpts) {
b := strconv.AppendInt(e.scratch[:0], v.Int(), 10)
if opts.quoted {//带有"string" opt添加引号
e.WriteByte('"')
}
e.Write(b)
if opts.quoted {
e.WriteByte('"')
}
}
对于数字类型,如果带有**“string”**则在写入正式值前后添加引号。
对于字符串类型,如果带有**“string”**,原string值再编码时会添加引号,再对结果添加引号,则格式异常,因此需要先对原值进行编码。
func stringEncoder(e *encodeState, v reflect.Value, opts encOpts) {
if v.Type() == numberType {
numStr := v.String()
// In Go1.5 the empty string encodes to "0", while this is not a valid number literal
// we keep compatibility so check validity after this.
if numStr == "" {
numStr = "0" // Number's zero-val
}
if !isValidNumber(numStr) {
e.error(fmt.Errorf("json: invalid number literal %q", numStr))
}
e.WriteString(numStr)
return
}
if opts.quoted {
sb, err := Marshal(v.String())//注意此处处理
if err != nil {
e.error(err)
}
e.string(string(sb), opts.escapeHTML)
} else {
e.string(v.String(), opts.escapeHTML)
}
}
func (e *encodeState) string(s string, escapeHTML bool) {
e.WriteByte('"')//添加引号
start := 0
for i := 0; i < len(s); {
if b := s[i]; b < utf8.RuneSelf {//字符串中存在特殊的字符时的转义处理
if htmlSafeSet[b] || (!escapeHTML && safeSet[b]) {
i++
continue
}
if start < i {
e.WriteString(s[start:i])
}
e.WriteByte('\\')
switch b {
case '\\', '"':
e.WriteByte(b)
case '\n':
e.WriteByte('n')
case '\r':
e.WriteByte('r')
case '\t':
e.WriteByte('t')
default:
// This encodes bytes < 0x20 except for \t, \n and \r.
// If escapeHTML is set, it also escapes <, >, and &
// because they can lead to security holes when
// user-controlled strings are rendered into JSON
// and served to some browsers.
e.WriteString(`u00`)
e.WriteByte(hex[b>>4])
e.WriteByte(hex[b&0xF])
}
i++
start = i
continue
}
c, size := utf8.DecodeRuneInString(s[i:])
if c == utf8.RuneError && size == 1 {
if start < i {
e.WriteString(s[start:i])
}
e.WriteString(`\ufffd`)
i += size
start = i
continue
}
// U+2028 is LINE SEPARATOR.
// U+2029 is PARAGRAPH SEPARATOR.
// They are both technically valid characters in JSON strings,
// but don't work in JSONP, which has to be evaluated as JavaScript,
// and can lead to security holes there. It is valid JSON to
// escape them, so we do so unconditionally.
// See http://timelessrepo.com/json-isnt-a-javascript-subset for discussion.
if c == '\u2028' || c == '\u2029' {
if start < i {
e.WriteString(s[start:i])
}
e.WriteString(`\u202`)
e.WriteByte(hex[c&0xF])
i += size
start = i
continue
}
i += size
}
if start < len(s) {
e.WriteString(s[start:])
}
e.WriteByte('"')
}
在了解完源码的处理过程后,我们对之前提到的问题做个解答。对string类型的字段添加"string" opt,得到的是:
Int64String string
json:",string"
// “Int64String”: "“1234"”
本文主要从源码的角度说明struct json tag的为什么这么使用,以及使用时需要注意的地方。最后重复下重要的几点:
json:"-"
,不得带有opts,否则key将会变成"-"
"string"
opt仅适用于字符串、浮点、整数及布尔类型,意思是可以将这些类型的数据Marshal为string类型,或者将string类型的数据Unmarshal为这些类型。