【数据结构和算法】--- 二叉树(5)--二叉树OJ题

目录

  • 一、二叉树OJ题
    • 1.1 单值二叉树
    • 1.2 检查两颗树是否相同
    • 1.3 对称二叉树
    • 1.4 另一颗树的子树
    • 1.5 平衡二叉树
  • 二、概念选择题

一、二叉树OJ题

1.1 单值二叉树

题目描述: 如果二叉树每个节点都具有相同的值,那么该二叉树就是单值二叉树。只有给定的树是单值二叉树时,才返回true;否则返回 false

做题链接: 965. 单值二叉树

解题思路:
我们可以利用递归分治的思想,将此问题分解为:根节点和左孩子的值是否相等(root->left->val != root->val),根节点和右孩子的值是否相等(root->right->val != root->val),左子树判断,右子树判断。
且在每次值相等判断之前都要 先确定,当前根节点是否为空(root == NULL),若为空就直接返回true表示相等。因为我们会不能确定当前节点的左右孩子是否为空节点,所以每次在比较当前节点和孩子节点的值的时候,都要先判断(root->left != NULLroot->right != NULL),以确保不会对空节点解引用。如果值不相等便返回false
最后一步便是继续递归当前节点的左子树(root->left)和右子树(root->right),那么如果左子树或右子树都为相同的值那么便返回true,如果有一个不相同便会返回false。既然这样,那么我们便可使用&&将递归左和右子树的函数连接起来(isUnivalTree(root->left) && isUnivalTree(root->right))。并将此结果作为返回值,只有同为true,才会真正的返回true

解题代码:

bool isUnivalTree(struct TreeNode* root) {
    if(root == NULL)
        return true;
    //左右孩子和当前节点的值的判断
    //1、先判孩子不为空; 2、再判孩子和根的值。
    if(root-> left != NULL && root->left->val != root->val)
        return false;
    if(root-> right != NULL && root->right->val != root->val)
        return false;
    //左右子树的递归判断
    return isUnivalTree(root->left) && isUnivalTree(root->right);
}

代码图解:
【数据结构和算法】--- 二叉树(5)--二叉树OJ题_第1张图片

1.2 检查两颗树是否相同

题目描述: 给你两棵二叉树的根节点pq,编写一个函数来检验这两棵树是否相同。如果两个树在结构上相同,并且节点具有相同的值,则认为它们是相同的。

做题链接: 100. 相同的树

解题思路:
同样可以利用递归分治的思想:两棵二叉树根节点是否相同,左子树是否相同,右子树是否相同。 首先判断两棵二叉树的根节点是否为空,若都为空(p == NULL && q == NULL)则定为相等,返回true。但是如果只有一个节点是空节点的话,那么便要返回false,此处可以使用p == NULL || q == NULL来判断。
相信有人会问,这样判断的话如果两个都是空节点的话,那不就返回false了吗?当然不会,如果能从第一个判断出来,就说明不会出现都为空的情况,那么进入此if语句的条件就只有两个节点中的一个为空!
判断完空节点的情况,我们便可判断这两个节点的值是否相同,若不同则返回false。最后再递归两棵二叉树的左右子树,若两函数都为true,则最终返回true

解题代码:

bool isSameTree(struct TreeNode* p, struct TreeNode* q) {
    if(p == NULL && q == NULL)
        return true;
    if(p == NULL || q == NULL)
        return false;
    if(p->val != q->val)
        return false;
    return isSameTree(p->left, q->left) && isSameTree(p->right, q->right);
}

代码图解:
【数据结构和算法】--- 二叉树(5)--二叉树OJ题_第2张图片

1.3 对称二叉树

题目描述: 给你一个二叉树的根节点 root , 检查它是否轴对称。

做题链接: 101. 对称二叉树

解题思路:
【数据结构和算法】--- 二叉树(5)--二叉树OJ题_第3张图片
看上面这个二叉树,如果我们将它分为,根节点,左子树,右子树。如果将左子树和右子树拆分开,那么判断对称二叉树,便可转化为检查两颗树是否相同!!
那么便可在1.2的基础上修改一下代码即可,即二叉树p的左子树和二叉树q的右子树是否相同,(isSameTree(p->left, q->right) && isSameTree(p->right, q->left)),因为两棵二叉树是镜像的关系。

解题代码:

//检查两颗树是否相同
bool isSameTree(struct TreeNode* p, struct TreeNode* q)
{
    if(!p && !q)
        return true;
    if(!p || !q)
        return false;
    if(q->val != p->val)
        return false;
    return isSameTree(p->left, q->right) && isSameTree(p->right, q->left);
}
//分出左右子树
bool isSymmetric(struct TreeNode* root) {
    return isSameTree(root->left, root->right);
}

1.4 另一颗树的子树

题目描述: 给你两棵二叉树 rootsubRoot 。检验 root 中是否包含和 subRoot具有相同结构和节点值的子树。如果存在,返回true ;否则,返回false
二叉树 tree的一棵子树包括 tree 的某个节点和这个节点的所有后代节点。tree也可以看做它自身的一棵子树。

做题链接: 572. 另一棵树的子树

解题思路:
此题思路任然与1.2检查两颗树是否相同,相似。若在root中寻找subRoot,那么便可以先判断当前二叉树rootsunRoot是否相似,若相似则返回true;不相似则继续递归root的左子树和右子树。 还需要注意的是,此处判断左右子树的函数使用||相连,因为只要左右子树中一个有subRoot即可。

解题代码:

bool isSubtree(struct TreeNode* root, struct TreeNode* subRoot){
    if(root == NULL && subRoot == NULL)
        return true;
    if(root == NULL || subRoot == NULL)
        return false;
    if(root->val != subRoot->val)
        return false;
    return isSubtree(root->left,subRoot) || isSubtree(root->right,subRoot);
}

1.5 平衡二叉树

做题链接: 110. 平衡二叉树

题目描述: 给定一个二叉树,判断它是否是高度平衡的二叉树。本题中,一棵高度平衡二叉树定义为:一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过 1 。

解题思路:
既然要判断左右子树的高度差,那么就要写出求二叉树的高度的函数。此函数实现思想:遇到空节点便返回0,然后递归左右子树,每递归一层便加一,返回左子树高度和右子树高度中的较大者,利用fmax()函数求较大值,具体思想还请参考图解:
【数据结构和算法】--- 二叉树(5)--二叉树OJ题_第4张图片
基于上述求二叉树最大高度的函数BinaryTreeHeight,那么便可利用递归分治的思想:根节点下左右子树的高度差,根节点左孩子作为二叉树第一层的左右子树的高度差,根节点右孩子作为二叉树第一层的左右子树的高度差。
遇到空节点便返回true,先利用BinaryTreeHeight函数求出左子树(leftHeight)和右子树(rightHeight)的最大高度,然后比较高度差(abs(leftHeight - rightHeight) > 1),若大于一则返回false,最后再递归左右子树。

解题代码:

//求当前节点下的左子树和右子树高度,并返回较大值
int BinaryTreeHeight(struct TreeNode* root)
{
   if(root == NULL)
       return 0;
   int leftHeight = BinaryTreeHeight(root->left) + 1;
   int rightHeight = BinaryTreeHeight(root->right) + 1;
   return fmax(leftHeight, rightHeight);
}
//主函数
bool isBalanced(struct TreeNode* root) 
{
    if(root == NULL)
        return true;
    //左 右子树高度
    int leftHeight = BinaryTreeHeight(root->left);
    int rightHeight = BinaryTreeHeight(root->right);
    //差值判断
    if(abs(leftHeight - rightHeight) > 1)
        return false;
    //递归左右子树
    return isBalanced(root->left) && isBalanced(root->right);
}

二、概念选择题

  1. 在一颗完全二叉树中,某一个结点没有其左孩子,则该结点一定(B
    A.是根结点
    B.是叶结点
    C.是分支结点
    D.在倒数第二层

解析: 完全二叉树中如果一个节点没有左孩子,则一定没有右孩子,必定为一个叶子节点,最后一层一定为叶子节点,但是倒数第二层也可能存在叶子节点。

  1. 有n个元素的完全二叉树的深度是(D
    A.nlogn
    B.nlogn+1
    C.logn
    D.logn+1
  2. 在一颗度为3的树中,度为3的结点有2个,度为2的结点有1个,度为1的结点有2个,则叶子结点有(B)个。

解析: 设度为i的节点个数为ni。 该树总共有n个节点,则n=n0+n1+n2+n3。有n个节点的树的总边数为n-1条。根据度的定义,总边数与度之间的关系为:n-1=0*n0+1*n1+2*n2+3*n3。联立两个方程求解,可以得到n0 = n2 + 2n3 + 1, n0=6

  1. 下列关于二叉树的叙述错误的是( A
    A.二叉树指的是深度为 2 的树
    B.一个 n 个结点的二叉树将拥有 n-1 条边
    C.一颗深度为 h 的满二叉树拥有 2^h-1 个结点(根结点深度为1)
    D.二叉树有二叉链和三叉链两种表示方式

解析: A错误: 二叉树指最大孩子个数为2,即树的度为二的树。深度描述的为树的层数。
B正确:对于任意的树都满足:边的条数比节点个数少1,因为每个节点都有双亲,但是根节点没有
C正确:正确,参加二叉树性质
D正确:二叉链一般指孩子表示法,三叉连指孩子双亲表示法,这两种方式是二叉树最常见的表示方式,虽然还有孩子兄弟表示法,该中表示方式本质也是二叉链。

  1. 设根结点的深度为1,则一个拥有n个结点的二叉树的深度一定在(A)区间内
    A.[log(n + 1),n]
    B.[logn,n]
    C.[log(n + 1),n - 1]
    D.[log(n + 1),n + 1]

解析: 最大深度: 即每次只有一个节点,次数二叉树的高度为n,为最高的高度。最小深度: 此树为完全二叉树, 如果是完全二叉树。根据二叉树性质,完全二叉树的高低为 h = log(n+1)向上取整。

你可能感兴趣的:(数据结构和算法,数据结构,算法)