- 【NO.4】LeetCode经典150题-80. 删除有序数组中的重复项 II
【NO.4】LeetCode经典150题-80.删除有序数组中的重复项II80.删除有序数组中的重复项II【中等】给你一个有序数组nums,请你原地删除重复出现的元素,使得出现次数超过两次的元素只出现两次,返回删除后数组的新长度。不要使用额外的数组空间,你必须在原地修改输入数组并在使用O(1)额外空间的条件下完成。说明:为什么返回数值是整数,但输出的答案是数组呢?请注意,输入数组是以**「引用」*
- leetcode: 167. 两数之和 II - 输入有序数组
-兮
#leetcodeleetcode算法数据结构
中等难度题目描述给你一个下标从1开始的整数数组numbers,该数组已按非递减顺序排列,请你从数组中找出满足相加之和等于目标数target的两个数。如果设这两个数分别是numbers[index1]和numbers[index2],则1twoSum(vector&numbers,inttarget){intk=numbers.size()-1;vectorres({1,2});for(vector
- 【课程毕业设计】基于数字PID的电加热炉温度控制系统设计
拉布拉斯也头大
毕业课程设计stm32单片机proteus嵌入式硬件pcb工艺
前言电加热炉控制系统属于一阶纯滞后环节,具有大惯性、纯滞后、非线性等特点,导致传统控制方法超调大。调节时间长、控制精度低。本设计采用PID算法进行温度控制,使整个闭环系统所期望的传递函数相当于一个延迟环节和一个惯性环节串联来实现对温度的较为精确的控制。第1章课程设计方案1.1系统组成中体结构电加热炉温度控制系统原理图如下,主要由温度检测电路、A/D转换电路、驱动执行电路、显示电路及按键电路等组成。
- matlab达林算法的电加热炉温度控制,基于单片机的电加热炉温度控制算法与仿真研究[1]...
收稿日期:2011-11作者简介:张宇驰(1978—),男,硕士,讲师,研究方向为自动控制与机电一体化。基于单片机的电加热炉温度控制算法与仿真研究张宇驰(湖南工业职业技术学院,湖南长沙410208)摘要:介绍几种基于单片机的电加热炉温度控制算法,通过对PID控制算法仿真、SMITH控制算法仿真、大林算法仿真的比较分析,仿真结果验证了大林控制算法的稳定性和鲁棒性较好,几乎没有超调量,且稳态误差小。关
- Day61 二叉树中的最大路径和
Shimmer_
给你一个二叉树的根节点root,返回其最大路径和https://leetcode-cn.com/problems/binary-tree-maximum-path-sum/路径被定义为一条从树中任意节点出发,沿父节点-子节点连接,达到任意节点的序列。同一个节点在一条路径序列中至多出现一次。该路径至少包含一个节点,且不一定经过根节点路径和是路径中各节点值的总和。示例1:1/\23输入:root=[1
- 数据结构自学笔记(二):时间复杂度与空间复杂度
时间复杂度和空间复杂度知识点一、知识点描述时间复杂度核心定义:描述算法时间开销随问题规模nnn增长的趋势,用大O符号表示(忽略常数、低阶项和系数)。大O规则:只看最高阶项(如O(n2+n)→O(n2)O(n^2+n)\rightarrowO(n^2)O(n2+n)→O(n2))。忽略系数(如O(5n3)→O(n3)O(5n^3)\rightarrowO(n^3)O(5n3)→O(n3))。常数项记
- BPE(字节对编码)和WordPiece 是什么
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpython机器学习算法人工智能transformer深度学习
BPE(字节对编码)和WordPiece是什么BPE(字节对编码)和WordPiece是自然语言处理中常用的子词分词算法,它们通过将文本拆分为更小的语义单元来平衡词汇表大小和表达能力。BPE(BytePairEncoding,字节对编码)原理初始化:将文本按字符(或Unicode字节)拆分为最小单元,形成初始词汇表。统计合并:迭代合并最频繁出现的相邻字符对,形成新的子词单元,直到达到预设的词汇表大
- 使用 C++ 和 OpenCV 进行表面划痕检测
whoarethenext
c++opencv开发语言划痕检测
使用C++和OpenCV进行表面划痕检测在工业自动化生产中,产品表面的质量控制至关重要。划痕作为一种常见的表面缺陷,其检测是许多领域(如金属、玻璃、塑料制造)质量保证流程中的一个关键环节。本文将介绍如何使用C++和强大的计算机视觉库OpenCV来实现一个基本的表面划痕检测算法。核心思路划痕通常在图像中表现为具有以下一个或多个特征的区域:高对比度的线性结构:划痕区域的像素强度通常会与其周围背景有明显
- Camera相机人脸识别系列专题分析之十:人脸特征检测FFD算法之低功耗libvega_face.so人脸识别检测流程详解
一起搞IT吧
数码相机算法计算机视觉深度学习图像处理android人工智能
【关注我,后续持续新增专题博文,谢谢!!!】上一篇我们讲了:Camera相机人脸识别系列专题分析之九:MTK平台FDNode三方FFD算法dump、日志开关、bypass、resize及强制不同三方FFD切换等客制化这一篇我们开始讲:Camera相机人脸识别系列专题分析之十:人脸特征检测FFD算法之低功耗libvega_face.so人脸识别检测流程详解目录一、背景二、:FFD算法libvega_
- Camera相机人脸识别系列专题分析之十五:人脸特征检测FFD算法之libcvface_api.so算法API详细注释解析
一起搞IT吧
数码相机android人工智能图像处理计算机视觉算法
【关注我,后续持续新增专题博文,谢谢!!!】上一篇我们讲了:这一篇我们开始讲:Camera相机人脸识别系列专题分析之十五:人脸特征检测FFD算法之libcvface_api.so算法API详细注释解析目录一、libcvface_api.so算法API详细注释解析<
- PTA浙大版《C语言程序设计(第3版)》题目集.2
Xiao 竹 zi
c语言算法数据结构
习题4-10猴子吃桃问题#includeintmain(){intn,m=1;scanf("%d",&n);for(inti=1;iintmain(){intn,a=1,b=1,i;scanf("%d",&n);if(n==1){printf("1");}else{for(i=3;(a+b)intmain(){charc;intre=0,t,flag=0;scanf("%d%c",&re,&c);
- 校园导游系统(C++)
白开水最甜
数据结构课程设计校园导航系统
问题总结1、当使用时,该头文件没有定义全局命名空间,必须使用usingnamespacestd,这样才能使用类似于cout这样的C++标识符正确用法:#includeusingnamespacestd;2、对称赋值(注意细节)for(i=1;i注意string第一个字母是小写4、使用迪杰特斯拉算法出现的问题只设置与起始节点v0有弧时前驱设置为v0,否则为-1,而忘记设置起始节点的前驱为-1。以至于
- AI人工智能中Actor - Critic算法的深入解析与应用场景
AI智能探索者
AIAgent智能体开发实战人工智能算法ai
AI人工智能中Actor-Critic算法的深入解析与应用场景关键词:Actor-Critic、强化学习、策略梯度、价值函数、深度强化学习、马尔可夫决策过程、A2C/A3C摘要:本文将深入解析Actor-Critic算法的核心原理,从基础概念到数学推导,再到实际应用场景。我们将通过生动的比喻解释这一强化学习中的重要算法,展示其Python实现代码,并探讨它在游戏AI、机器人控制等领域的应用。最后,
- AI人工智能领域多模态大模型的发展历程回顾
AI智能探索者
AIAgent智能体开发实战人工智能ai
AI人工智能领域多模态大模型的发展历程回顾关键词:AI人工智能、多模态大模型、发展历程、技术演变、应用场景摘要:本文旨在全面回顾AI人工智能领域多模态大模型的发展历程。通过对不同阶段核心概念、算法原理、数学模型等方面的深入剖析,结合实际项目案例,探讨其在各个领域的应用场景。同时,推荐相关的学习资源、开发工具和重要论文著作,最后总结多模态大模型的未来发展趋势与挑战,并对常见问题进行解答。1.背景介绍
- AI人工智能领域Actor - Critic算法的可视化分析
AI智能探索者
AIAgent智能体开发实战人工智能算法ai
AI人工智能领域Actor-Critic算法的可视化分析关键词:Actor-Critic算法、强化学习、策略梯度、价值函数、可视化分析、神经网络、马尔可夫决策过程摘要:本文深入浅出地讲解Actor-Critic算法的核心原理,通过生活化的比喻和可视化分析,帮助读者理解这一强化学习中的重要算法。我们将从基础概念入手,逐步剖析算法架构,并通过Python代码实现和可视化演示,展示算法在实际问题中的应用
- 【C语言】语义陷阱探秘(一):指针与数组
byte轻骑兵
C语言实战避坑:从新手到“老油条”的蜕变c语言开发语言
目录一、指针与数组的基本关系1.1.数组名与指针1.2.数组下标与指针运算1.3.示例二、常见的语义陷阱2.1指针未初始化2.1.1.陷阱描述:指针未初始化2.1.2.解决方法2.1.3.示例2.2数组越界2.2.1.陷阱描述2.2.2.解决方法2.2.3.示例2.2.4.注意事项2.3指针和数组的相互转换错误2.3.1.陷阱描述2.3.2.解决方法2.3.3.示例2.3.4.注意事项2.4指针引
- 【C语言进阶】使用memcpy你需要注意的一个问题
架构师李肯
嵌入式物联网开发进阶c语言单片机memcpy
【C语言进阶】使用memcpy你需要注意的一个问题日常编程中,memcpy可以算得上是使用频次非常高的函数,那么有些小点可能你没有关注到,本文将给你提个小醒。文章目录1写在前面2问题现场3知识点补充3.1标准库对memcpy的描述3.2一个简易版本的源码实现3.3问题答疑4小小总结5更多分享1写在前面作为一个C语言程序员,标准库函数使用频次排行榜上,memcpy在上面的排行一定会非常靠前,就算排不
- Leetcode 202 快乐数
Leetcode202快乐数编写一个算法来判断一个数n是不是快乐数。「快乐数」定义为:对于一个正整数,每一次将该数替换为它每个位置上的数字的平方和。然后重复这个过程直到这个数变为1,也可能是无限循环但始终变不到1。如果这个过程结果为1,那么这个数就是快乐数。如果n是快乐数就返回true;不是,则返回false。示例1:输入:n=19输出:true解释:12+92=8282+22=6862+82=1
- 手撕C语言数组:从青铜到王者的逆袭之路!!!
文章目录一、数组的"出生证明"(超重要!)1.1数组的定义姿势1.2数组初始化の艺术二、数组内存布局大揭秘三、新手必踩的5大深坑(血泪教训)3.1数组越界访问3.2sizeof的陷阱3.3数组赋值妄想症四、高手进阶技巧(秀起来~)4.1动态计算数组长度4.2多维数组の奥义4.3数组与指针的量子纠缠五、实战代码示范5.1数组反转算法5.2数组去重骚操作六、总结与思考天天用数组,你真的了解它吗?这个看
- 强化学习------DDPG算法
ZPC8210
算法numpymatplotlib
一、前言DeepDeterministicPolicyGradient(DDPG)算法是DeepMind团队提出的一种专门用于解决连续控制问题的在线式(on-line)深度强化学习算法,它其实本质上借鉴了DeepQ-Network(DQN)算法里面的一些思想。论文和源代码如下:论文:https://arxiv.org/pdf/1509.02971.pdf代码:https://github.com/
- 带你走进相位解包裹算法课程
Cedric1113
程序人生
第一节:相位解包裹基础理论与核心概念课程导入相位解包裹在三维测量中的重要性(工业检测、生物医学等)包裹相位与真实相位的关系(反正切函数的主值限制)核心概念解析相位跳变的原因与表现(噪声、光照不均等干扰)解包裹算法分类:路径跟踪法vs.全局优化法经典算法初探Goldstein枝切法(残差点检测与枝切线构建)最小二乘法(全局平滑优化原理)实验演示:仿真包裹相位图的生成与基础算法解包裹效果对比第二节:路
- Actor - Critic:AI人工智能领域的新宠儿
Actor-Critic:AI人工智能领域的新宠儿关键词:强化学习、Actor-Critic、策略梯度、价值函数、深度强化学习、A2C、A3C摘要:Actor-Critic是强化学习领域的一种重要算法框架,它结合了策略梯度方法和价值函数方法的优点,成为近年来人工智能领域的热门研究方向。本文将用通俗易懂的方式介绍Actor-Critic的核心概念、工作原理、实现方法以及实际应用,帮助读者理解这一强大
- Golang 数据库缓存策略:减少 SQL 查询次数
Golang数据库缓存策略:减少SQL查询次数关键词:Golang、数据库缓存、SQL查询次数、缓存策略、性能优化摘要:本文主要探讨了在Golang中使用数据库缓存策略来减少SQL查询次数的相关技术。通过深入讲解缓存的核心概念、算法原理、实际应用场景等内容,帮助读者理解如何利用缓存优化数据库性能。同时,结合具体的代码案例,详细展示了在Golang中实现缓存策略的方法,最后分析了未来的发展趋势与面临
- 深度优先搜索(DFS) vs 广度优先搜索(BFS):核心区别与应用场景
#深度优先搜索(DFS)vs广度优先搜索(BFS):核心区别与应用场景>关键词:深度优先搜索、广度优先搜索、图遍历、算法比较、应用场景>摘要:本文通过迷宫探险和消防灭火的生动比喻,揭示DFS与BFS的核心原理。结合Python代码示例和图解说明,深入解析两种算法的实现差异,并通过社交网络分析等实际案例展示它们的应用场景选择依据。##背景介绍###目的和范围本指南旨在帮助读者理解两种基础图遍历算法的
- 数据结构与算法里散列表的算法优化技巧
数据结构与算法学习
散列表算法数据结构ai
数据结构与算法里散列表的算法优化技巧关键词:散列表、哈希冲突、负载因子、开放寻址法、链地址法、动态扩容、哈希函数优化摘要:本文将深入探讨散列表的核心原理与优化技巧,通过图书馆管理员的比喻揭示哈希冲突的本质,结合Python代码演示动态扩容策略与哈希函数优化方法,最后通过实际案例展示如何将查询速度提升300%。文章包含5个可视化流程图和3个完整代码实现。背景介绍目的和范围本文面向已掌握基础数据结构知
- 操作系统休眠功能的用户体验设计
操作系统内核探秘
ux服务器负载均衡ai
操作系统休眠功能的用户体验设计关键词:操作系统、休眠功能、用户体验设计、响应速度、能源管理摘要:本文聚焦于操作系统休眠功能的用户体验设计,首先介绍了该设计的背景,涵盖目的、预期读者等内容。接着详细解释了与休眠功能相关的核心概念及其联系,通过生动的比喻让读者轻松理解。阐述了休眠功能背后的核心算法原理和具体操作步骤,给出了数学模型及公式。还通过项目实战展示了代码实现与解读。之后探讨了实际应用场景、推荐
- 探索AI人工智能中遗传算法的进化奥秘
AI学长带你学AI
人工智能ai
探索AI人工智能中遗传算法的进化奥秘关键词:遗传算法、自然选择、基因编码、适应度函数、群体进化、交叉变异、优化问题摘要:本文将用生物进化视角解读人工智能中的遗传算法原理。通过达尔文进化论的生活化比喻,结合Python代码实例演示如何模拟基因遗传、自然选择等过程,揭示遗传算法在路径规划、参数优化等场景的应用奥秘。最后探讨遗传算法的局限性与未来发展方向。背景介绍目的和范围本文旨在用通俗易懂的方式解析遗
- 深度剖析AI人工智能领域多模态大模型
AI学长带你学AI
AI人工智能与大数据应用开发AI应用开发高级指南人工智能ai
深度剖析AI人工智能领域多模态大模型关键词:AI人工智能、多模态大模型、模型架构、算法原理、应用场景摘要:本文旨在对AI人工智能领域的多模态大模型进行深度剖析。首先介绍多模态大模型的背景知识,包括目的、预期读者等。接着阐述核心概念,分析其架构和原理,并给出相应的流程图。通过Python代码详细讲解核心算法原理和具体操作步骤,同时用数学模型和公式进一步阐释。在项目实战部分,给出实际案例及详细代码解读
- Open AI在AI人工智能领域的创新之路
AI学长带你学AI
AI人工智能与大数据应用开发AI应用开发高级指南人工智能ai
OpenAI在AI人工智能领域的创新之路关键词:OpenAI、人工智能、创新之路、技术突破、应用场景摘要:本文深入探讨了OpenAI在AI人工智能领域的创新之路。首先介绍了OpenAI的背景信息,包括其成立目的、发展历程等。接着详细阐述了OpenAI的核心概念,如强化学习、生成式对抗网络等,并通过示意图和流程图展示其原理和架构。然后讲解了相关核心算法原理,结合Python代码进行具体说明。同时,给
- 初识C语言(上)
想要成为计算机高手
c语言笔记
目录1.第一个C语言程序2.数据类型3.变量、常量3.1定义变量的方法3.2变量的分类3.3变量的使用3.4变量的作用域和生民周期3.5常量4.字符串;转义字符4.1字符串4.2转义字符5.注释6.选择语句7.循环语句1.第一个C语言程序#includeintmain(){printf("hellocode\n");return0;}//main函数是程序的入口//一个工程中main函数有且仅有一
- 插入表主键冲突做更新
a-john
有以下场景:
用户下了一个订单,订单内的内容较多,且来自多表,首次下单的时候,内容可能会不全(部分内容不是必须,出现有些表根本就没有没有该订单的值)。在以后更改订单时,有些内容会更改,有些内容会新增。
问题:
如果在sql语句中执行update操作,在没有数据的表中会出错。如果在逻辑代码中先做查询,查询结果有做更新,没有做插入,这样会将代码复杂化。
解决:
mysql中提供了一个sql语
- Android xml资源文件中@、@android:type、@*、?、@+含义和区别
Cb123456
@+@?@*
一.@代表引用资源
1.引用自定义资源。格式:@[package:]type/name
android:text="@string/hello"
2.引用系统资源。格式:@android:type/name
android:textColor="@android:color/opaque_red"
- 数据结构的基本介绍
天子之骄
数据结构散列表树、图线性结构价格标签
数据结构的基本介绍
数据结构就是数据的组织形式,用一种提前设计好的框架去存取数据,以便更方便,高效的对数据进行增删查改。正确选择合适的数据结构,对软件程序的高效执行的影响作用不亚于算法的设计。此外,在计算机系统中数据结构的作用也是非同小可。例如常常在编程语言中听到的栈,堆等,就是经典的数据结构。
经典的数据结构大致如下:
一:线性数据结构
(1):列表
a
- 通过二维码开放平台的API快速生成二维码
一炮送你回车库
api
现在很多网站都有通过扫二维码用手机连接的功能,联图网(http://www.liantu.com/pingtai/)的二维码开放平台开放了一个生成二维码图片的Api,挺方便使用的。闲着无聊,写了个前台快速生成二维码的方法。
html代码如下:(二维码将生成在这div下)
? 1
&nbs
- ImageIO读取一张图片改变大小
3213213333332132
javaIOimageBufferedImage
package com.demo;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
/**
* @Description 读取一张图片改变大小
* @author FuJianyon
- myeclipse集成svn(一针见血)
7454103
eclipseSVNMyEclipse
&n
- 装箱与拆箱----autoboxing和unboxing
darkranger
J2SE
4.2 自动装箱和拆箱
基本数据(Primitive)类型的自动装箱(autoboxing)、拆箱(unboxing)是自J2SE 5.0开始提供的功能。虽然为您打包基本数据类型提供了方便,但提供方便的同时表示隐藏了细节,建议在能够区分基本数据类型与对象的差别时再使用。
4.2.1 autoboxing和unboxing
在Java中,所有要处理的东西几乎都是对象(Object)
- ajax传统的方式制作ajax
aijuans
Ajax
//这是前台的代码
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%> <% String path = request.getContextPath(); String basePath = request.getScheme()+
- 只用jre的eclipse是怎么编译java源文件的?
avords
javaeclipsejdktomcat
eclipse只需要jre就可以运行开发java程序了,也能自动 编译java源代码,但是jre不是java的运行环境么,难道jre中也带有编译工具? 还是eclipse自己实现的?谁能给解释一下呢问题补充:假设系统中没有安装jdk or jre,只在eclipse的目录中有一个jre,那么eclipse会采用该jre,问题是eclipse照样可以编译java源文件,为什么呢?
&nb
- 前端模块化
bee1314
模块化
背景: 前端JavaScript模块化,其实已经不是什么新鲜事了。但是很多的项目还没有真正的使用起来,还处于刀耕火种的野蛮生长阶段。 JavaScript一直缺乏有效的包管理机制,造成了大量的全局变量,大量的方法冲突。我们多么渴望有天能像Java(import),Python (import),Ruby(require)那样写代码。在没有包管理机制的年代,我们是怎么避免所
- 处理百万级以上的数据处理
bijian1013
oraclesql数据库大数据查询
一.处理百万级以上的数据提高查询速度的方法: 1.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 o
- mac 卸载 java 1.7 或更高版本
征客丶
javaOS
卸载 java 1.7 或更高
sudo rm -rf /Library/Internet\ Plug-Ins/JavaAppletPlugin.plugin
成功执行此命令后,还可以执行 java 与 javac 命令
sudo rm -rf /Library/PreferencePanes/JavaControlPanel.prefPane
成功执行此命令后,还可以执行 java
- 【Spark六十一】Spark Streaming结合Flume、Kafka进行日志分析
bit1129
Stream
第一步,Flume和Kakfa对接,Flume抓取日志,写到Kafka中
第二部,Spark Streaming读取Kafka中的数据,进行实时分析
本文首先使用Kakfa自带的消息处理(脚本)来获取消息,走通Flume和Kafka的对接 1. Flume配置
1. 下载Flume和Kafka集成的插件,下载地址:https://github.com/beyondj2ee/f
- Erlang vs TNSDL
bookjovi
erlang
TNSDL是Nokia内部用于开发电信交换软件的私有语言,是在SDL语言的基础上加以修改而成,TNSDL需翻译成C语言得以编译执行,TNSDL语言中实现了异步并行的特点,当然要完整实现异步并行还需要运行时动态库的支持,异步并行类似于Erlang的process(轻量级进程),TNSDL中则称之为hand,Erlang是基于vm(beam)开发,
- 非常希望有一个预防疲劳的java软件, 预防过劳死和眼睛疲劳,大家一起努力搞一个
ljy325
企业应用
非常希望有一个预防疲劳的java软件,我看新闻和网站,国防科技大学的科学家累死了,太疲劳,老是加班,不休息,经常吃药,吃药根本就没用,根本原因是疲劳过度。我以前做java,那会公司垃圾,老想赶快学习到东西跳槽离开,搞得超负荷,不明理。深圳做软件开发经常累死人,总有不明理的人,有个软件提醒限制很好,可以挽救很多人的生命。
相关新闻:
(1)IT行业成五大疾病重灾区:过劳死平均37.9岁
- 读《研磨设计模式》-代码笔记-原型模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* Effective Java 建议使用copy constructor or copy factory来代替clone()方法:
* 1.public Product copy(Product p){}
* 2.publi
- 配置管理---svn工具之权限配置
chenyu19891124
SVN
今天花了大半天的功夫,终于弄懂svn权限配置。下面是今天收获的战绩。
安装完svn后就是在svn中建立版本库,比如我本地的是版本库路径是C:\Repositories\pepos。pepos是我的版本库。在pepos的目录结构
pepos
component
webapps
在conf里面的auth里赋予的权限配置为
[groups]
- 浅谈程序员的数学修养
comsci
设计模式编程算法面试招聘
浅谈程序员的数学修养
- 批量执行 bulk collect与forall用法
daizj
oraclesqlbulk collectforall
BULK COLLECT 子句会批量检索结果,即一次性将结果集绑定到一个集合变量中,并从SQL引擎发送到PL/SQL引擎。通常可以在SELECT INTO、
FETCH INTO以及RETURNING INTO子句中使用BULK COLLECT。本文将逐一描述BULK COLLECT在这几种情形下的用法。
有关FORALL语句的用法请参考:批量SQL之 F
- Linux下使用rsync最快速删除海量文件的方法
dongwei_6688
OS
1、先安装rsync:yum install rsync
2、建立一个空的文件夹:mkdir /tmp/test
3、用rsync删除目标目录:rsync --delete-before -a -H -v --progress --stats /tmp/test/ log/这样我们要删除的log目录就会被清空了,删除的速度会非常快。rsync实际上用的是替换原理,处理数十万个文件也是秒删。
- Yii CModel中rules验证规格
dcj3sjt126com
rulesyiivalidate
Yii cValidator主要用法分析:
yii验证rulesit 分类: Yii yii的rules验证 cValidator主要属性 attributes ,builtInValidators,enableClientValidation,message,on,safe,skipOnError
 
- 基于vagrant的redis主从实验
dcj3sjt126com
vagrant
平台: Mac
工具: Vagrant
系统: Centos6.5
实验目的: Redis主从
实现思路
制作一个基于sentos6.5, 已经安装好reids的box, 添加一个脚本配置从机, 然后作为后面主机从机的基础box
制作sentos6.5+redis的box
mkdir vagrant_redis
cd vagrant_
- Memcached(二)、Centos安装Memcached服务器
frank1234
centosmemcached
一、安装gcc
rpm和yum安装memcached服务器连接没有找到,所以我使用的是make的方式安装,由于make依赖于gcc,所以要先安装gcc
开始安装,命令如下,[color=red][b]顺序一定不能出错[/b][/color]:
建议可以先切换到root用户,不然可能会遇到权限问题:su root 输入密码......
rpm -ivh kernel-head
- Remove Duplicates from Sorted List
hcx2013
remove
Given a sorted linked list, delete all duplicates such that each element appear only once.
For example,Given 1->1->2, return 1->2.Given 1->1->2->3->3, return&
- Spring4新特性——JSR310日期时间API的支持
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- 浅谈enum与单例设计模式
247687009
java单例
在JDK1.5之前的单例实现方式有两种(懒汉式和饿汉式并无设计上的区别故看做一种),两者同是私有构
造器,导出静态成员变量,以便调用者访问。
第一种
package singleton;
public class Singleton {
//导出全局成员
public final static Singleton INSTANCE = new S
- 使用switch条件语句需要注意的几点
openwrt
cbreakswitch
1. 当满足条件的case中没有break,程序将依次执行其后的每种条件(包括default)直到遇到break跳出
int main()
{
int n = 1;
switch(n) {
case 1:
printf("--1--\n");
default:
printf("defa
- 配置Spring Mybatis JUnit测试环境的应用上下文
schnell18
springmybatisJUnit
Spring-test模块中的应用上下文和web及spring boot的有很大差异。主要试下来差异有:
单元测试的app context不支持从外部properties文件注入属性
@Value注解不能解析带通配符的路径字符串
解决第一个问题可以配置一个PropertyPlaceholderConfigurer的bean。
第二个问题的具体实例是:
 
- Java 定时任务总结一
tuoni
javaspringtimerquartztimertask
Java定时任务总结 一.从技术上分类大概分为以下三种方式: 1.Java自带的java.util.Timer类,这个类允许你调度一个java.util.TimerTask任务; 说明: java.util.Timer定时器,实际上是个线程,定时执行TimerTask类 &
- 一种防止用户生成内容站点出现商业广告以及非法有害等垃圾信息的方法
yangshangchuan
rank相似度计算文本相似度词袋模型余弦相似度
本文描述了一种在ITEYE博客频道上面出现的新型的商业广告形式及其应对方法,对于其他的用户生成内容站点类型也具有同样的适用性。
最近在ITEYE博客频道上面出现了一种新型的商业广告形式,方法如下:
1、注册多个账号(一般10个以上)。
2、从多个账号中选择一个账号,发表1-2篇博文