Kafka源码分析-Consumer(11)-总结(1)

现在回顾KafkaConsumer的整体架构。KafkaConsumer依赖SubscriptionState管理订阅topic集合和Partition的消费状态,通过ConsumerCoordinator与服务端的GroupCoordinator交互,完成Rebalance操作并请求最近提交的offset。Fetcher负责从Kafka拉取消息并进行解析,同时参与position的重置操作,提供获取指定topic的集群元数据的操作。
上面所有的请求都是通过ConsumerNetworkClient缓存并发送的,在ConsumerNetworkClient还维护了定时任务队列,用来完成HeartbeatTask任务和AutoCommit任务,NetworkClient在接收到上述请求的响应时会调用相应的回调,最终交给对应的*Handler以及RequestFuture的监听器进行处理。
KafkaConsumer的整体架构图如下:


KafkaConsumer整体架构.jpg

下面分析下KafkaConsumer剩余的代码:
KafkaConsumer不是一个线程安全的类,为了防止多线程并发操作造成的一致性问题,KafkaConsumer提供了多线程并发的检测机制,涉及到的方法是acquire()和release()。这两个方法的代码如下:

 /**
     * Acquire the light lock protecting this consumer from multi-threaded access. Instead of blocking
     * when the lock is not available, however, we just throw an exception (since multi-threaded usage is not
     * supported).
     * @throws IllegalStateException if the consumer has been closed
     * @throws ConcurrentModificationException if another thread already has the lock
     */
    private void acquire() {
        ensureNotClosed();
        long threadId = Thread.currentThread().getId();
        //记录当前线程Id,通过CAS操作完成
        if (threadId != currentThread.get() && !currentThread.compareAndSet(NO_CURRENT_THREAD, threadId))
            throw new ConcurrentModificationException("KafkaConsumer is not safe for multi-threaded access");
        //记录重入次数
        refcount.incrementAndGet();
    }

/**
     * Release the light lock protecting the consumer from multi-threaded access.
     */
    private void release() {
        if (refcount.decrementAndGet() == 0)
            //更新线程id
            currentThread.set(NO_CURRENT_THREAD);
    }

上面的这两个方法并不是一种锁的实现,仅仅是实现了检测多线程并发操作的检测。使用CAS保证线程间的可见性。
分析下KafkaConsumer.poll()方法进行消息消费的整个流程以及相关代码如下:

    public ConsumerRecords poll(long timeout) {
        acquire();//防止多线程操作。
        try {
            if (timeout < 0)
                throw new IllegalArgumentException("Timeout must not be negative");

            // poll for new data until the timeout expires
            long start = time.milliseconds();
            long remaining = timeout;
            do {
                Map>> records = pollOnce(remaining);//核心方法
                if (!records.isEmpty()) {//检测是否有消息返回
                    // before returning the fetched records, we can send off the next round of fetches
                    // and avoid block waiting for their responses to enable pipelining while the user
                    // is handling the fetched records.
                    //
                    // NOTE: since the consumed position has already been updated, we must not allow
                    // wakeups or any other errors to be triggered prior to returning the fetched records.
                    // Additionally, pollNoWakeup does not allow automatic commits to get triggered.
                    // 为了提升效率,在对records集合进行处理之前,先发送一次FetchRequest。这样,线程处理完
                    // 本次records集合的操作,与 FetchRequest 及其响应在网络上传输以及在服务端的处理就变成并行
                    // 这样就减少等待网络IO的时间。
                    fetcher.sendFetches();//创建并缓存 FetchRequest
                    
                    //调用ConsumerNetworkClient.pollNoWakeUp()方法将FetchRequest发送
                    //出去。这里的pollNoWakeup()方法并不会阻塞,不能被中断,不会执行定时任务
                    client.pollNoWakeup();

                    if (this.interceptors == null)
                        return new ConsumerRecords<>(records);
                    else
                        //调用ConsumerInterceptors
                        return this.interceptors.onConsume(new ConsumerRecords<>(records));
                }

                long elapsed = time.milliseconds() - start;//计算超时时间
                remaining = timeout - elapsed;
            } while (remaining > 0);

            return ConsumerRecords.empty();
        } finally {
            release();
        }
    }

在消费完成后,客户端还要commit offset,手动提交调offset用commitSync(),手动异步提交用commitAsync(),自动commit offset使用定时任务AutoCommitTask。
在pollOnce()方法中先通过ConsumerCoordinator与GroupCoordinator交互完成Rebalance操作,之后从GroupCoordinator获取最近一次提交的offset(或重置position),最后才是使用Fetcher,从Kafka获取消息进行消费。pollOnce()方法如下:

/**
     * Do one round of polling. In addition to checking for new data, this does any needed
     * heart-beating, auto-commits, and offset updates.
     * @param timeout The maximum time to block in the underlying poll
     * @return The fetched records (may be empty)
     */
    private Map>> pollOnce(long timeout) {
        // ensure we have partitions assigned if we expect to
        
        //如果是AUTO_TOPICS或AUTO_PATTERN订阅模式
        if (subscriptions.partitionsAutoAssigned())
            coordinator.ensurePartitionAssignment();//完成rebalance操作

        // fetch positions if we have partitions we're subscribed to that we
        // don't know the offset for
        //恢复SubscriptionState中对应的TopicPartitionState状态
        //主要是committed字段和position字段
        if (!subscriptions.hasAllFetchPositions())
            updateFetchPositions(this.subscriptions.missingFetchPositions());

        long now = time.milliseconds();

        // execute delayed tasks (e.g. autocommits and heartbeats) prior to fetching records
        client.executeDelayedTasks(now);//执行定时任务,HeartbeatTask和AutoCommitTask

        // init any new fetches (won't resend pending fetches)
        //尝试从completedFetches缓存中解析消息
        Map>> records = fetcher.fetchedRecords();

        // if data is available already, e.g. from a previous network client poll() call to commit,
        // then just return it immediately
        if (!records.isEmpty())
            return records;

        fetcher.sendFetches();//创建并缓存FetchRequest请求
        client.poll(timeout, now);//发送FetchRequest
        return fetcher.fetchedRecords();//从completedFetches缓存中解析消息
    }

你可能感兴趣的:(Kafka源码分析-Consumer(11)-总结(1))