- DeepSeek 推出全新推理模型 R1-Lite 预览版
三花AI
三花AI人工智能
DeepSeek全新研发的推理模型预览版DeepSeek-R1-Lite现已正式上线网页版。R1系列模型采用强化学习训练,推理过程中包含大量反思和验证,思维链长度可达数万字。该系列模型在数学、代码以及各种复杂逻辑推理任务上,取得了媲美o1-preview的推理效果。目前,DeepSeek-R1-Lite仍处于迭代开发阶段,仅支持网页使用,暂不支持API调用。官方表示,正式版DeepSeek-R1模
- 探索未来AI:飞桨大模型套件PaddleFleetX引领技术新高度
窦育培
探索未来AI:飞桨大模型套件PaddleFleetX引领技术新高度PaddleFleetX飞桨大模型开发套件,提供大语言模型、跨模态大模型、生物计算大模型等领域的全流程开发工具链。项目地址:https://gitcode.com/gh_mirrors/pa/PaddleFleetX在人工智能的快速发展中,大模型已经成为推动技术创新的重要力量。如今,我们有幸向您推荐一个全新的开源项目——Paddle
- 跨平台物联网漏洞挖掘算法评估框架设计与实现文献综述之GMN
XLYcmy
漏洞挖掘物联网网络安全漏洞挖掘跨架构静态检测图神经网络项目报告
2.4Gemini和GMN我们采用了两种方式:Gemini和GMN。2.4.2GMN图神经网络(GraphNeuralNetworks-GNNs)是一种用于学习结构化数据及相关预测问题的方法。节点的表示被用于节点分类或生成图向量再用于分类。GMN模型针对图的相似性学习问题,提出了一种使用GNNs将图嵌入到向量空间,并通过交叉图注意机制来计算相似度分数以关联图之间的相似性的模型。GMN模型不是独立地
- Cursor 的 AI 模型:代码生成与理解的原理
drebander
AI编程Cursor
引言在当今的软件开发领域,人工智能(AI)正在迅速改变开发者的工作方式。Cursor作为一款智能编程助手,通过集成先进的AI模型,为开发者提供了强大的代码生成、补全和优化功能。Cursor的核心竞争力在于其AI模型的能力,这些模型不仅能够理解代码的上下文,还能生成高质量的代码建议。本文将深入探讨Cursor使用的AI模型(如GPT系列或其他定制模型),并解析这些模型如何理解代码上下文并生成高质量的
- 使用Ollama部署deepseek大模型
使用Ollama部署deepseek大模型前置条件使用英伟达显卡下载cuda驱动https://developer.nvidia.com/cuda-downloadsOllamaOllama官方版:https://ollama.com/我的显卡在Windows电脑上面所以使用Windows的安装方式去安装若你的显卡是在Linux上面可以使用如下命令安装curl-fsSLhttps://ollama
- AI对接之对话API对接指南
我码玄黄
AI探索AI工具教你一招人工智能AIAI对接前端
AI对接之对话API对接指南本系列AI的API对接均以DeepSeek为例,其他大模型的对接方式类似。在人工智能领域,对话系统是连接人与机器的重要桥梁。DeepSeekAPI提供了一个强大的对话补全功能,使得开发者能够轻松地将智能对话集成到自己的应用中。本文将详细介绍如何对接DeepSeek的对话补全API,并展示几种典型的使用形式。1.API概览DeepSeek的对话补全API通过一个POST请
- Go语言协程
kawhi794
golang
目录前言一、进程、线程、协程1.进程2.线程3.协程4.协程的优势5.进程、线程、协程的对比二、协程1.协程数据结构2.协程执行过程3.GMP调度模型4.调度策略1.队列轮转2.系统调用3.工作量窃取4.抢占式调度总结前言最近发现go语言大火,越来越多的大厂都开始使用go语言,很多人也开启了学习Go语言,本文就介绍了Go语言中协程的基础内容以及协程的调度模型。一、进程、线程、协程1.进程进程是应用
- 深度学习篇---深度学习框架
Ronin-Lotus
深度学习篇深度学习人工智能pythonPytorchTensorFlowpaddlepaddle
文章目录前言第一部分:框架简介1.PyTorch简介特点动态计算图易于上手强大的社区支持与Python的集成度高核心组件2.TensorFlow简介特点静态计算图跨平台强大的生态系统Keras集成核心组件3.PaddlePaddle简介特点易于使用高性能工业级应用丰富的预训练模型核心组件第二部分:基本操作PyTorch基本操作TensorFlow基本操作PaddlePaddle基本操作总结前言以上
- Spring AI 与企业级应用架构的结合
drebander
AI编程人工智能架构springAI
随着AI技术的不断发展,越来越多的企业开始将AI模型集成到其业务系统中,从而提升系统的智能化水平、自动化程度和用户体验。在此背景下,SpringAI作为一个企业级AI框架,提供了丰富的工具和机制,可以帮助开发者将AI模型无缝地集成到SpringBoot应用中,并支持大规模的部署和扩展。本文将深入讨论如何将SpringAI集成到企业级应用架构中,支持大规模的部署和扩展,确保在高并发、复杂业务场景下的
- 软件架构设计与模式之:DevOps与运维架构
AI天才研究院
架构师必知必会系列编程实践大数据人工智能语言模型JavaPython架构设计
作者:禅与计算机程序设计艺术文章目录1.简介概要目的2.DevOps概述什么是DevOps?DevOps的关键点DevOps的价值3.DevOps基本概念、术语及流程管理工程价值流动方法论模型职能团队能力圈景气文化工具链4.DevOps与运维架构DevOps与运维架构的区别DevOps实践与运维架构DevOps架构图DevSecOps实践DevOps的发展趋势DevOps迫切需求1.简介概要Dev
- YOLOv10:面向下一代目标检测模型的创新探索
AgriTube
YOLO
随着计算机视觉技术的飞速发展,目标检测模型在各类应用场景中的重要性与日俱增。从自动驾驶到智能监控,目标检测的准确性和实时性都直接影响着应用的效果和用户体验。YOLO(YouOnlyLookOnce)系列作为实时目标检测的代表性模型,自发布以来便因其速度与精度的平衡性得到了广泛关注和应用。如今,随着YOLOv10的即将推出,我们站在技术的前沿,思考如何对这一模型进行革新,使其在面对复杂多变的场景时表
- DeepSeek-V3 技术报告
mingo_敏
LLM深度学习人工智能
1概述本文介绍了DeepSeek-V3,一个强大的混合专家(MoE)语言模型,总参数量为6710亿,每个token激活的参数量为370亿。为了实现高效的推理和经济高效的训练,DeepSeek-V3采用了多头潜在注意力(MLA)和DeepSeekMoE架构,这些架构在DeepSeek-V2中得到了充分验证。此外,DeepSeek-V3率先采用了无辅助损失的负载均衡策略,并设定了多token预测训练目
- DeepSeek 系列之 构建我自己的 DeepSeek Janus Pro Web 界面:使用 Gradio 进行本地实验
知识大胖
NVIDIAGPU和大语言模型开发教程deepseekjanuspro
介绍在探索了DeepSeek-R1并使用Ollama在本地运行模型后,我忍不住深入研究了DeepSeekJanusPro。但这次,我想更进一步:创建自己的Web界面来与模型交互,就像HuggingFace上的一样。剧透警告:它并不完美(是的,它很慢),但它有效——而且我在这个过程中学到了很多东西!推荐文章《如何在本地电脑上安装和使用DeepSeekR-1》权重1,DeepSeek《Nvidia系列
- 2024-2025自动驾驶技术演进与产业破局的深度实践——一名自动驾驶算法工程师的年度技术总结与行业洞察
xiaomu_347
自动驾驶linux人工智能
一、引言:站在自动驾驶的"技术奇点"2024年是自动驾驶行业从"技术验证"迈向"商业化落地"的关键转折点。从特斯拉FSDV12的端到端技术突破,到中国L3法规的破冰,从大模型重构感知架构,到城市NOA的"千城大战",自动驾驶正在经历从实验室到真实场景的"惊险一跃"。作为某自动驾驶公司的算法工程师,我亲历了从传统模块化架构到数据驱动范式的技术跃迁。本文将以技术演进、行业洞察与个人实践为主线,剖析自动
- 基于强化学习的自动驾驶决策规划算法
AI天才研究院
LLM大模型落地实战指南AI大模型应用入门实战与进阶计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
基于强化学习的自动驾驶决策规划算法作者:禅与计算机程序设计艺术1.背景介绍自动驾驶技术是当前人工智能领域最受关注和投入的方向之一。自动驾驶汽车需要在复杂多变的交通环境中做出安全、舒适和高效的决策和行动。传统基于规则和模型的决策规划方法已经难以满足自动驾驶的需求。近年来,基于强化学习的决策规划算法越来越受到关注,它能够在复杂动态环境中学习出高效的决策策略。2.核心概念与联系强化学习是一种通过与环境的
- 具身智能VLA(视觉-语言-动作)入门+RTX4060+Ubuntu22.04
铮铭
transformerpytorch深度学习linuxpythonVLA
从2024年的11月20日开始到现在差不多有2个月,总结一下这段时间的VLA学习经历。我也自己学习的代码都整理到GitHub上了,链接:GitHub-hzm8341/vla_tutorial:howtolearnvla欢迎大家点赞和留言,有问题我会尽快回答。第一个阶段:学习transformer和大模型:我喜欢刷微信的短视频,看到了入门的课程:GitHub-rasbt/LLMs-from-scra
- 搞嵌入式开发,如何才能“小有所成”,获得更高的收入?
智驾
杂谈嵌入式职业规划
文章目录引言一、技术能力体系构建(金字塔模型)1.基础层(硬件理解)2.核心层(软件能力)3.扩展层(系统级能力)二、项目经验增值策略1.开源项目参与2.行业级项目实战3.专利布局三、高价值领域选择1.薪资溢价行业2.技术风口方向四、职业发展加速路径1.认证体系进阶2.收入增长策略3.职场跃迁节点五、持续进化方法论1.技术雷达维护2.工程能力量化3.跨界能力融合六、薪资谈判策略1.构建技术护城河:
- 联想Y7000+RTX4060+i7+Ubuntu22.04运行DeepSeek开源多模态大模型Janus-Pro-1B+本地部署
铮铭
深度学习deepseekJanus-Pro文生图图像理解
直接上手搓了:condacreate-nmyenvpython=3.10-ygitclonehttps://github.com/deepseek-ai/Janus.gitcdJanuspipinstall-e.pipinstallwebencodingsbeautifulsoup4tinycss2pipinstall-e.[gradio]pipinstall'pexpect>4.3'python
- 构建DDPM模型:实现手写数字生成
AI天才研究院
AI大模型企业级应用开发实战大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
构建DDPM模型:实现手写数字生成作者:禅与计算机程序设计艺术1.背景介绍1.1.图像生成技术的演进图像生成技术近年来取得了飞速的发展,从早期的像素级操作到如今的深度生成模型,技术不断革新,生成的图像也越来越逼真。早期的图像生成方法主要依赖于手工设计的规则和特征,例如,基于规则的纹理合成、基于特征的图像变形等。这些方法通常需要大量的领域知识和人工调整,难以生成高质量的图像。1.2.深度生成模型的崛
- 原创prompt:员工加班助手
姚瑞南
prompt实战应用案例prompt
本文原创作者:姚瑞南AI-agent大模型运营专家,先后任职于美团、猎聘等中大厂AI训练专家和智能运营专家岗;多年人工智能行业智能产品运营及大模型落地经验,拥有AI外呼方向国家专利与PMP项目管理证书。(转载需经授权)#Role:员工加班填报助手##Profile:你是一个在公司内部帮助员工填报加班信息、审批的办公室助手,主要任务是通过友好且礼貌的引导员工对话填报加班方式来帮助员工完成加班信息填报
- 深入探讨:如何在Python中使用流式传输技术高效调用大型语言模型
m0_57781768
python语言模型microsoft
深入探讨:如何在Python中使用流式传输技术高效调用大型语言模型在现代人工智能应用中,大型语言模型(LargeLanguageModels,LLM)已经成为了强大的工具,能够生成高质量的自然语言文本,并且被广泛应用于各种任务中,如对话系统、文本生成、内容总结等。然而,如何更加高效地调用这些模型,特别是在实时交互的应用中,往往是开发者面临的挑战。流式传输(Streaming)技术提供了一种解决方案
- NLP模型大对比:Transformer >Seq2Seq > LSTM > RNN > n-gram
feifeikon
自然语言处理transformerbert
结论Transformer大于传统的Seq2Seq大于LSTM大于RNN大于传统的n-gramn-gramVSTransformer我们可以用一个图书馆查询的类比来解释它们的差异:一、核心差异对比维度n-gram模型Transformer工作方式固定窗口的"近视观察员"全局关联的"侦探"依赖距离只能看前N-1个词(如3-gram只看前2词)可关注任意距离的上下文语义理解机械统计共现频率理解词语间的
- 修改训练配置记录
positive546
深度学习人工智能机器学习
1.learning_rate:作用:学习率。修改影响:调整此值可以显著影响模型的训练速度和最终性能。在train.py代码的设置训练配置中:trainer=SFTTrainer(model=model,tokenizer=tokenizer,train_dataset=dataset,dataset_text_field="text",max_seq_length=max_seq_length,
- JavaScript简介、如何在HTML中使用JavaScript以及JavaScript基本概念
v.15889726201
javascripthtmludp
一、JavaScript简介一个完整的JavaScript实现应该由ECMAScript(核心)、DOM(文档对象模型)、BOM(浏览器对象模型)三个不同的部分组成;ECMAScript提供核心语言;DOM(DocumentObjectModel)把整个页面映射为一个多层节点结构,是针对XML但经过扩展用于HTML的应用程序编程接口(API),借助DOM提供的API,开发人员可以轻松自如地删除、添
- MongoDB 学习指南:深入探索非关系型数据库
来恩1003
MongoDBmongodbnosql数据库
MongoDB学习资料MongoDB学习资料MongoDB学习资料在当今数字化时代,数据量呈爆炸式增长,数据结构也变得愈发复杂多样。传统的关系型数据库在处理一些大规模、高并发以及非结构化数据时,逐渐显露出局限性。而MongoDB作为一款领先的非关系型数据库,凭借其灵活的数据模型、出色的扩展性和强大的性能,迅速在众多领域得到广泛应用。无论是新兴的互联网企业,还是传统的金融、医疗等行业,都能看到Mon
- OpenAI o1 模型到来后,谈谈提示词工程的未来
编者按:你是否也在思考:当AI模型越来越强大时,我们还需要花时间去学习那些复杂的提示词技巧吗?我们究竟要在提示词工程上投入多少精力?是该深入学习各种高级提示词技术,还是静观其变?本文作者基于对OpenAI最新o1模型的深入观察,为我们揭示了一个重要趋势:就像我们不再需要专门去学习"如何使用搜索引擎"一样,与AI交互也将变得越来越自然和直观。文章不仅分析了提示词技术的发展趋势,更提供了务实的建议:与
- 【大模型入门必看】LLM大语言模型导读
古-月
LLM大语言模型
前言在规模扩展定律(ScalingLaws)被证明对语言模型有效之后,研究者构建出了许多大语言模型。尤其是2022年底面向普通消费者的ChatGPT模型的出现,正式标志着自然语言处理进入大语言模型时代。本章将简要梳理大语言模型的技术要点以及构建过程,并且列举了可用于预训练以及微调模型的常用数据集,介绍了目前开发大语言模型常用的代码库、预训练大语言模型的步骤以及涉及的关键技术,包括数据准备阶段、模型
- 使用DeepSeek批量生成文章,对搜索引擎产生一定影响。
木合塔尔 麦麦提
搜索引擎
使用DeepSeek批量生成文章可以通过API接口或批量任务功能实现。以下是具体步骤和注意事项:---###**一、准备工作**1.**获取API权限**-注册DeepSeek账号并获取API密钥(APIKey)。-阅读API文档,了解支持的模型、参数和调用限制。2.**明确需求**-确定批量生成的文章主题、风格、字数等要求。-准备输入数据(如关键词列表、大纲模板等)。3.**选择工具**-使用编
- [特殊字符]【计算机视觉必杀技】三行代码实现文档智能校正(附完整代码)
我的青春不太冷
计算机视觉人工智能科技学习Pythonopencv
文章目录基于四点透视变换的文档图像校正技术1.实现效果2.技术原理2.1透视变换数学模型2.2算法流程3.核心代码解析3.1.1坐标点排序3.1.2透视变换矩阵4.实验结果分析4.1中间过程可视化4.2性能指标5.应用场景5.1纸质文档电子化5.2车牌识别预处理5.3AR场景平面检测5.4工业视觉中的平面定位6.总实现代码7.结论基于四点透视变换的文档图像校正技术在计算机视觉领域,图像几何变换是实
- Linux 五种IO模型总篇(阻塞IO、非阻塞IO、信号驱动IO、多路复用IO(select、poll、epoll)、异步IO)
laimaxgg
linux运维服务器后端c++
Linux五种IO模型总篇1.IO模型介绍IO(InputOutput)简单来说就是等和拷贝,当底层数据没有就绪时,等待数据就绪,当数据就绪时就拷贝数据到上层。对于怎么等和拷贝的问题,衍生出了五种IO模型,阻塞IO、非阻塞IO、信号驱动IO、多路复用/多路转接IO、异步IO。前四种IO是同步IO,多路复用/多路转接IO是异步IO。模型类型阻塞IO同步非阻塞IO同步信号驱动IO同步多路复用IO同步异
- PHP,安卓,UI,java,linux视频教程合集
cocos2d-x小菜
javaUIPHPandroidlinux
╔-----------------------------------╗┆
- 各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
bozch
.net.net mvc
在.net mvc5中,在执行某一操作的时候,出现了如下错误:
各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
经查询当前的操作与错误内容无关,经过对错误信息的排查发现,事故出现在数据库迁移上。
回想过去: 在迁移之前已经对数据库进行了添加字段操作,再次进行迁移插入XXX字段的时候,就会提示如上错误。
&
- Java 对象大小的计算
e200702084
java
Java对象的大小
如何计算一个对象的大小呢?
 
- Mybatis Spring
171815164
mybatis
ApplicationContext ac = new ClassPathXmlApplicationContext("applicationContext.xml");
CustomerService userService = (CustomerService) ac.getBean("customerService");
Customer cust
- JVM 不稳定参数
g21121
jvm
-XX 参数被称为不稳定参数,之所以这么叫是因为此类参数的设置很容易引起JVM 性能上的差异,使JVM 存在极大的不稳定性。当然这是在非合理设置的前提下,如果此类参数设置合理讲大大提高JVM 的性能及稳定性。 可以说“不稳定参数”
- 用户自动登录网站
永夜-极光
用户
1.目标:实现用户登录后,再次登录就自动登录,无需用户名和密码
2.思路:将用户的信息保存为cookie
每次用户访问网站,通过filter拦截所有请求,在filter中读取所有的cookie,如果找到了保存登录信息的cookie,那么在cookie中读取登录信息,然后直接
- centos7 安装后失去win7的引导记录
程序员是怎么炼成的
操作系统
1.使用root身份(必须)打开 /boot/grub2/grub.cfg 2.找到 ### BEGIN /etc/grub.d/30_os-prober ### 在后面添加 menuentry "Windows 7 (loader) (on /dev/sda1)" { 
- Oracle 10g 官方中文安装帮助文档以及Oracle官方中文教程文档下载
aijuans
oracle
Oracle 10g 官方中文安装帮助文档下载:http://download.csdn.net/tag/Oracle%E4%B8%AD%E6%96%87API%EF%BC%8COracle%E4%B8%AD%E6%96%87%E6%96%87%E6%A1%A3%EF%BC%8Coracle%E5%AD%A6%E4%B9%A0%E6%96%87%E6%A1%A3 Oracle 10g 官方中文教程
- JavaEE开源快速开发平台G4Studio_V3.2发布了
無為子
AOPoraclemysqljavaeeG4Studio
我非常高兴地宣布,今天我们最新的JavaEE开源快速开发平台G4Studio_V3.2版本已经正式发布。大家可以通过如下地址下载。
访问G4Studio网站
http://www.g4it.org
G4Studio_V3.2版本变更日志
功能新增
(1).新增了系统右下角滑出提示窗口功能。
(2).新增了文件资源的Zip压缩和解压缩
- Oracle常用的单行函数应用技巧总结
百合不是茶
日期函数转换函数(核心)数字函数通用函数(核心)字符函数
单行函数; 字符函数,数字函数,日期函数,转换函数(核心),通用函数(核心)
一:字符函数:
.UPPER(字符串) 将字符串转为大写
.LOWER (字符串) 将字符串转为小写
.INITCAP(字符串) 将首字母大写
.LENGTH (字符串) 字符串的长度
.REPLACE(字符串,'A','_') 将字符串字符A转换成_
- Mockito异常测试实例
bijian1013
java单元测试mockito
Mockito异常测试实例:
package com.bijian.study;
import static org.mockito.Mockito.mock;
import static org.mockito.Mockito.when;
import org.junit.Assert;
import org.junit.Test;
import org.mockito.
- GA与量子恒道统计
Bill_chen
JavaScript浏览器百度Google防火墙
前一阵子,统计**网址时,Google Analytics(GA) 和量子恒道统计(也称量子统计),数据有较大的偏差,仔细找相关资料研究了下,总结如下:
为何GA和量子网站统计(量子统计前身为雅虎统计)结果不同?
首先:没有一种网站统计工具能保证百分之百的准确出现该问题可能有以下几个原因:(1)不同的统计分析系统的算法机制不同;(2)统计代码放置的位置和前后
- 【Linux命令三】Top命令
bit1129
linux命令
Linux的Top命令类似于Windows的任务管理器,可以查看当前系统的运行情况,包括CPU、内存的使用情况等。如下是一个Top命令的执行结果:
top - 21:22:04 up 1 day, 23:49, 1 user, load average: 1.10, 1.66, 1.99
Tasks: 202 total, 4 running, 198 sl
- spring四种依赖注入方式
白糖_
spring
平常的java开发中,程序员在某个类中需要依赖其它类的方法,则通常是new一个依赖类再调用类实例的方法,这种开发存在的问题是new的类实例不好统一管理,spring提出了依赖注入的思想,即依赖类不由程序员实例化,而是通过spring容器帮我们new指定实例并且将实例注入到需要该对象的类中。依赖注入的另一种说法是“控制反转”,通俗的理解是:平常我们new一个实例,这个实例的控制权是我
- angular.injector
boyitech
AngularJSAngularJS API
angular.injector
描述: 创建一个injector对象, 调用injector对象的方法可以获得angular的service, 或者用来做依赖注入. 使用方法: angular.injector(modules, [strictDi]) 参数详解: Param Type Details mod
- java-同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待
bylijinnan
Integer
public class PC {
/**
* 题目:生产者-消费者。
* 同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待。
*/
private static final Integer[] val=new Integer[10];
private static
- 使用Struts2.2.1配置
Chen.H
apachespringWebxmlstruts
Struts2.2.1 需要如下 jar包: commons-fileupload-1.2.1.jar commons-io-1.3.2.jar commons-logging-1.0.4.jar freemarker-2.3.16.jar javassist-3.7.ga.jar ognl-3.0.jar spring.jar
struts2-core-2.2.1.jar struts2-sp
- [职业与教育]青春之歌
comsci
教育
每个人都有自己的青春之歌............但是我要说的却不是青春...
大家如果在自己的职业生涯没有给自己以后创业留一点点机会,仅仅凭学历和人脉关系,是难以在竞争激烈的市场中生存下去的....
&nbs
- oracle连接(join)中使用using关键字
daizj
JOINoraclesqlusing
在oracle连接(join)中使用using关键字
34. View the Exhibit and examine the structure of the ORDERS and ORDER_ITEMS tables.
Evaluate the following SQL statement:
SELECT oi.order_id, product_id, order_date
FRO
- NIO示例
daysinsun
nio
NIO服务端代码:
public class NIOServer {
private Selector selector;
public void startServer(int port) throws IOException {
ServerSocketChannel serverChannel = ServerSocketChannel.open(
- C语言学习homework1
dcj3sjt126com
chomework
0、 课堂练习做完
1、使用sizeof计算出你所知道的所有的类型占用的空间。
int x;
sizeof(x);
sizeof(int);
# include <stdio.h>
int main(void)
{
int x1;
char x2;
double x3;
float x4;
printf(&quo
- select in order by , mysql排序
dcj3sjt126com
mysql
If i select like this:
SELECT id FROM users WHERE id IN(3,4,8,1);
This by default will select users in this order
1,3,4,8,
I would like to select them in the same order that i put IN() values so:
- 页面校验-新建项目
fanxiaolong
页面校验
$(document).ready(
function() {
var flag = true;
$('#changeform').submit(function() {
var projectScValNull = true;
var s ="";
var parent_id = $("#parent_id").v
- Ehcache(02)——ehcache.xml简介
234390216
ehcacheehcache.xml简介
ehcache.xml简介
ehcache.xml文件是用来定义Ehcache的配置信息的,更准确的来说它是定义CacheManager的配置信息的。根据之前我们在《Ehcache简介》一文中对CacheManager的介绍我们知道一切Ehcache的应用都是从CacheManager开始的。在不指定配置信
- junit 4.11中三个新功能
jackyrong
java
junit 4.11中两个新增的功能,首先是注解中可以参数化,比如
import static org.junit.Assert.assertEquals;
import java.util.Arrays;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.junit.runn
- 国外程序员爱用苹果Mac电脑的10大理由
php教程分享
windowsPHPunixMicrosoftperl
Mac 在国外很受欢迎,尤其是在 设计/web开发/IT 人员圈子里。普通用户喜欢 Mac 可以理解,毕竟 Mac 设计美观,简单好用,没有病毒。那么为什么专业人士也对 Mac 情有独钟呢?从个人使用经验来看我想有下面几个原因:
1、Mac OS X 是基于 Unix 的
这一点太重要了,尤其是对开发人员,至少对于我来说很重要,这意味着Unix 下一堆好用的工具都可以随手捡到。如果你是个 wi
- 位运算、异或的实际应用
wenjinglian
位运算
一. 位操作基础,用一张表描述位操作符的应用规则并详细解释。
二. 常用位操作小技巧,有判断奇偶、交换两数、变换符号、求绝对值。
三. 位操作与空间压缩,针对筛素数进行空间压缩。
&n
- weblogic部署项目出现的一些问题(持续补充中……)
Everyday都不同
weblogic部署失败
好吧,weblogic的问题确实……
问题一:
org.springframework.beans.factory.BeanDefinitionStoreException: Failed to read candidate component class: URL [zip:E:/weblogic/user_projects/domains/base_domain/serve
- tomcat7性能调优(01)
toknowme
tomcat7
Tomcat优化: 1、最大连接数最大线程等设置
<Connector port="8082" protocol="HTTP/1.1"
useBodyEncodingForURI="t
- PO VO DAO DTO BO TO概念与区别
xp9802
javaDAO设计模式bean领域模型
O/R Mapping 是 Object Relational Mapping(对象关系映射)的缩写。通俗点讲,就是将对象与关系数据库绑定,用对象来表示关系数据。在O/R Mapping的世界里,有两个基本的也是重要的东东需要了解,即VO,PO。
它们的关系应该是相互独立的,一个VO可以只是PO的部分,也可以是多个PO构成,同样也可以等同于一个PO(指的是他们的属性)。这样,PO独立出来,数据持