基于卷积神经网络-最小二乘支持向量机CNN-LSSVM回归预测,多变量输入模型,matlab代码,要求2019及以上版本。评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方

基于卷积神经网络-最小二乘支持向量机CNN-LSSVM回归预测,多变量输入模型,matlab代码,要求2019及以上版本。评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方_第1张图片

%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行
%%  导入数据
P_train = xlsread('data','training set','B2:G191')';
T_train= xlsread('data','training set','H2:H191')';
% 测试集——44个样本
P_test=xlsread('data','test set','B2:G45')';
T_test=xlsread('data','test set','H2:H45')';

%%  数据分析
outdim = 1;                                  % 最后一列为输出
f_ = size(P_train, 1);                  % 输入特征维度

%%  划分训练集和测试集

M = size(P_train, 2);
N = size(P_test, 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

智能算法及其模型预测

你可能感兴趣的:(cnn,支持向量机,回归)