TCGA新版数据库表达矩阵提取

本文首发于公众号:医学和生信笔记

医学和生信笔记,专注R语言在临床医学中的使用,R语言数据分析和可视化。主要分享R语言做医学统计学、meta分析、网络药理学、临床预测模型、机器学习、生物信息学等。

现在使用TCGAbiolinks下载转录组数据后,直接是一个SummarizedExperiment对象,这个对象非常重要且好用。因为里面 直接包含了表达矩阵、样本信息、基因信息,可以非常方便的通过内置函数直接提取想要的数据,再也不用手扒了!!

这个对象的结构是这样的:


image.png

上次我们下载了常见的组学数据,今天学习下怎么提取数据,就以TCGA-READ的转录组数据为例。

分别提取mRNA和lncRNA的表达矩阵,还要添加gene symbol的那种!

加载数据和R包

加载之前下载好的数据。

rm(list = ls())
library(SummarizedExperiment)

load("TCGA-mRNA/TCGA-READ_mRNA.Rdata")
se <- data

这个se就是你的对象,含有coldata, rowdata, meta-data,以及最重要的assay,共有6个assay

探索SummarizedExperiment对象

se
## class: RangedSummarizedExperiment 
## dim: 60660 177 
## metadata(1): data_release
## assays(6): unstranded stranded_first ... fpkm_unstrand fpkm_uq_unstrand
## rownames(60660): ENSG00000000003.15 ENSG00000000005.6 ...
##   ENSG00000288674.1 ENSG00000288675.1
## rowData names(10): source type ... hgnc_id havana_gene
## colnames(177): TCGA-AG-3580-01A-01R-0821-07
##   TCGA-AF-2692-11A-01R-A32Z-07 ... TCGA-AG-3894-01A-01R-1119-07
##   TCGA-AG-3574-01A-01R-0821-07
## colData names(107): barcode patient ... paper_vascular_invasion_present
##   paper_vital_status

看看这个对象,它告诉你:

  • 类型是:RangedSummarizedExperiment
  • 维度:60660行,177列
  • 6个assay以及它们的名字
  • 表达矩阵的行名
  • 行信息(也就是基因信息),比如gene id,gene name,gene type
  • 表达矩阵的列名(也就是样本名)
  • 列信息,也就是样本信息,比如生存时间、生存状态这些

太齐全了有没有!!
每个assay你可以理解为一个表达矩阵,我们需要的counts矩阵、TPM矩阵、FPKM矩阵就是其中一个~

# 查看每个assay的名字
names(assays(se))
## [1] "unstranded"       "stranded_first"   "stranded_second"  "tpm_unstrand"    
## [5] "fpkm_unstrand"    "fpkm_uq_unstrand"

每个基因属于mRNA还是lncRNA存储在rowData中,这个rowData你可以理解为一个包含基因各种信息的数据框。
其中gene_type是基因类型,帮助我们区分到底是lncRNA还是mRNA,当然还包括很多其他类型。

# 提取rowData
rowdata <- rowData(se)

# 看看rowData包括哪些内容,可以看到里面有我们需要的gene_name和gene_type
names(rowdata)
##  [1] "source"      "type"        "score"       "phase"       "gene_id"    
##  [6] "gene_type"   "gene_name"   "level"       "hgnc_id"     "havana_gene"

# gene_type是基因类型,看看有哪些
table(rowdata$gene_type)
## 
##                          IG_C_gene                    IG_C_pseudogene 
##                                 14                                  9 
##                          IG_D_gene                          IG_J_gene 
##                                 37                                 18 
##                    IG_J_pseudogene                      IG_pseudogene 
##                                  3                                  1 
##                          IG_V_gene                    IG_V_pseudogene 
##                                145                                187 
##                             lncRNA                              miRNA 
##                              16901                               1881 
##                           misc_RNA                            Mt_rRNA 
##                               2212                                  2 
##                            Mt_tRNA             polymorphic_pseudogene 
##                                 22                                 48 
##               processed_pseudogene                     protein_coding 
##                              10167                              19962 
##                         pseudogene                           ribozyme 
##                                 18                                  8 
##                               rRNA                    rRNA_pseudogene 
##                                 47                                497 
##                             scaRNA                              scRNA 
##                                 49                                  1 
##                             snoRNA                              snRNA 
##                                943                               1901 
##                               sRNA                                TEC 
##                                  5                               1057 
##                          TR_C_gene                          TR_D_gene 
##                                  6                                  4 
##                          TR_J_gene                    TR_J_pseudogene 
##                                 79                                  4 
##                          TR_V_gene                    TR_V_pseudogene 
##                                106                                 33 
##   transcribed_processed_pseudogene     transcribed_unitary_pseudogene 
##                                500                                138 
## transcribed_unprocessed_pseudogene    translated_processed_pseudogene 
##                                939                                  2 
##  translated_unprocessed_pseudogene                 unitary_pseudogene 
##                                  1                                 98 
##             unprocessed_pseudogene                          vault_RNA 
##                               2614                                  1

gene_name就是gene_symbol,我们的id转换就用这一列信息。

# gene_name就是gene_symbol,就是我们需要的
head(rowdata$gene_name)
## [1] "TSPAN6"   "TNMD"     "DPM1"     "SCYL3"    "C1orf112" "FGR"
length(rowdata$gene_name)
## [1] 60660

还有一个重要的知识点是:SummarizedExperiment对象可以取子集,就像对数据框取子集那样,选择符合条件的行和列,并且子集也是SummarizedExperiment对象!

rowdata <- rowData(se)

# 分别提取mRNA和lncRNA的SummarizedExperiment对象
# 根据gene_type取子集,太简单了!
se_mrna <- se[rowdata$gene_type == "protein_coding",]
se_lnc <- se[rowdata$gene_type == "lncRNA"]

se_mrna #还是一个SummarizedExperiment对象,神奇!
## class: RangedSummarizedExperiment 
## dim: 19962 177 
## metadata(1): data_release
## assays(6): unstranded stranded_first ... fpkm_unstrand fpkm_uq_unstrand
## rownames(19962): ENSG00000000003.15 ENSG00000000005.6 ...
##   ENSG00000288674.1 ENSG00000288675.1
## rowData names(10): source type ... hgnc_id havana_gene
## colnames(177): TCGA-AG-3580-01A-01R-0821-07
##   TCGA-AF-2692-11A-01R-A32Z-07 ... TCGA-AG-3894-01A-01R-1119-07
##   TCGA-AG-3574-01A-01R-0821-07
## colData names(107): barcode patient ... paper_vascular_invasion_present
##   paper_vital_status
se_lnc
## class: RangedSummarizedExperiment 
## dim: 16901 177 
## metadata(1): data_release
## assays(6): unstranded stranded_first ... fpkm_unstrand fpkm_uq_unstrand
## rownames(16901): ENSG00000082929.8 ENSG00000083622.8 ...
##   ENSG00000288667.1 ENSG00000288670.1
## rowData names(10): source type ... hgnc_id havana_gene
## colnames(177): TCGA-AG-3580-01A-01R-0821-07
##   TCGA-AF-2692-11A-01R-A32Z-07 ... TCGA-AG-3894-01A-01R-1119-07
##   TCGA-AG-3574-01A-01R-0821-07
## colData names(107): barcode patient ... paper_vascular_invasion_present
##   paper_vital_status

提取表达矩阵

有了这些东西,就可以提取表达矩阵了,直接使用assay()搞定!

# mRNA的counts矩阵
expr_counts_mrna <- assay(se_mrna,"unstranded")

# mRNA的tpm矩阵
expr_tpm_mrna <- assay(se_mrna,"tpm_unstrand")

# mRNA的fpkm矩阵
expr_fpkm_mrna <- assay(se_mrna,"fpkm_unstrand")

# lncRNA的counts矩阵
expr_counts_lnc <- assay(se_lnc,"unstranded")

# lncRNA的tpm矩阵
expr_tpm_lnc <- assay(se_lnc,"tpm_unstrand")

# lncRNA的fpkm矩阵
expr_fpkm_lnc <- assay(se_lnc,"fpkm_unstrand")

简单!方便!快捷!
随便展示下:

expr_counts_mrna[1:10,1:2]
##                    TCGA-AG-3580-01A-01R-0821-07 TCGA-AF-2692-11A-01R-A32Z-07
## ENSG00000000003.15                         3199                         5839
## ENSG00000000005.6                             6                           91
## ENSG00000000419.13                          828                         1867
## ENSG00000000457.14                          386                          639
## ENSG00000000460.17                          228                          289
## ENSG00000000938.13                          130                          452
## ENSG00000000971.16                          277                         5170
## ENSG00000001036.14                         1648                         2946
## ENSG00000001084.13                          823                         2414
## ENSG00000001167.14                          619                         1487
image.png

添加gene_symbol

添加gene_symbol也就非常简单了,只要提取gene_name这一列,然后和原来的表达矩阵合并即可!

# 先提取gene_name
symbol_mrna <- rowData(se_mrna)$gene_name
head(symbol_mrna)
## [1] "TSPAN6"   "TNMD"     "DPM1"     "SCYL3"    "C1orf112" "FGR"

symbol_lnc <- rowData(se_lnc)$gene_name
head(symbol_lnc)
## [1] "LINC01587"  "AC000061.1" "AC016026.1" "IGF2-AS"    "RRN3P2"    
## [6] "AC087235.1"

和你喜欢的表达矩阵合并就行了:

expr_counts_mrna_symbol <- cbind(data.frame(symbol_mrna),
                                 as.data.frame(expr_counts_mrna))
image.png

非常顺利~

但是呢,此时gene_symbol是有重复的,看上图中就有2个CD99,需要去重!

去重复也很简单,这里我们保留最大的那个。

suppressPackageStartupMessages(library(tidyverse))

expr_read <- expr_counts_mrna_symbol %>% 
  as_tibble() %>% # tibble不支持row name,我竟然才发现!
  mutate(meanrow = rowMeans(.[,-1]), .before=2) %>% 
  arrange(desc(meanrow)) %>% 
  distinct(symbol_mrna,.keep_all=T) %>% 
  select(-meanrow) %>% 
  column_to_rownames(var = "symbol_mrna") %>% 
  as.data.frame()

不过还是要注意,gene_symbol是有重复的,需要去重复哦~
结果就变成大家最熟悉的表达矩阵了:


image.png

这样一个表达矩阵就搞定了!

本文首发于公众号:医学和生信笔记

医学和生信笔记,专注R语言在临床医学中的使用,R语言数据分析和可视化。主要分享R语言做医学统计学、meta分析、网络药理学、临床预测模型、机器学习、生物信息学等。

你可能感兴趣的:(TCGA新版数据库表达矩阵提取)