- 递推9~15
是帅帅的少年
东方博宜OJ题库解析算法数据结构
题单地址:题单中心-东方博宜OJ1298.摘花生问题问题描述HelloKitty想摘点花生送给她喜欢的米老鼠。她来到一片有网格状道路的矩形花生地(如下图),从西北角进去,东南角出来。地里每个道路的交叉点上都有种着一株花生苗,上面有若干颗花生,经过一株花生苗就能摘走该它上面所有的花生。HelloKitty只能向东或向南走,不能向西或向北走。问HelloKitty最多能够摘到多少颗花生。如输入:221
- 【人工智能】随机森林的智慧:集成学习的理论与实践
蒙娜丽宁
人工智能人工智能随机森林集成学习
随机森林(RandomForest)是一种强大的集成学习算法,通过构建多棵决策树并结合投票或平均预测提升模型性能。本文深入探讨了随机森林的理论基础,包括决策树的构建、Bagging方法和特征随机选择机制,并通过LaTeX公式推导其偏差-方差分解和误差分析。接着,我们详细描述了随机森林的算法流程,分析其在分类和回归任务中的适用性。文章还通过实验对比随机森林与单一决策树及其他算法(如SVM)的性能,探
- 《C语言动态顺序表:从内存管理到功能实现》
Oracle_666
c语言开发语言
1.顺序表1.1概念顺序存储的线性表,叫顺序表。1.2顺序表存放的实现方式可以使用数组存储数据,可以实现逻辑上相连,物理内存上也相连。也可以使用malloc在堆区申请一片连续的空间,存放数据,实现逻辑上相连,物理内存上也相连。1.3顺序表的组成需要一片连续的空间,存放数据。可以是数组,也可以是连续堆区空间还需要一个变量来记录当前顺序表的长度。(已存放的元素个数)1.4对顺序表长度的解析顺序表的长度
- 自然之美:探索湖光山色的秘密!
大脸猫的猫脸大
微信新浪微博facebook微信公众平台twitter经验分享笔记
沿着河流前行,我来到了一处峡谷。这里的山势险峻,危峰兀立,给人一种强烈的视觉冲击。峡谷中的水流更加湍急,波浪拍打着岩石,溅起一朵朵白色的浪花。站在峡谷边缘,我能感受到一种无形的力量,它来自大自然的鬼斧神工,也来自内心深处对美好的向往。继续前行,一片波澜壮阔的湖泊映入眼帘。湖水宽广无垠,天边的云彩倒映其中,形成了一幅动人的画面。湖边,柳绿花艳,莺歌燕舞,一派生机勃勃的景象。微风吹过,带来了阵阵花香和
- 数字识别项目
不要天天开心
机器学习人工智能深度学习算法
集成算法·Bagging·随机森林构造树模型:由于二重随机性,使得每个树基本上都不会一样,最终的结果也会不一样。集成算法·Stacking·堆叠:很暴力,拿来一堆直接上(各种分类器都来了)·可以堆叠各种各样的分类器(KNN,SVM,RF等等)·分阶段:第一阶段得出各自结果,第二阶段再用前一阶段结果训练实现神经网络实例利用PyTorch内置函数mnist下载数据。·利用torchvision对数据进
- 考研系列-数据结构第六章:图(上)
Nelson_hehe
#数据结构笔记数据结构图的存储邻接表邻接矩阵十字链表法图的基本操作
目录写在前面一、图的基本概念1.图的定义2.图的种类(1)无向图、有向图(2)简单图、多重图3.顶点的度4.顶点与顶点之间关系描述5.图的连通性(1)连通图、强连通图(2)连通分量、强连通分量(3)生成树、生成森林6.带权图7.几种特殊形态的图(会识别、掌握特性)8.总结9.习题总结(1)选择题(2)简答题二、图的存储1.邻接矩阵(1)存储结构(存储非带权图)(2)邻接矩阵基本性质(3)邻接矩阵存
- R语言 决策树、svm支持向量机、随机森林
别叫我名字20
R语言决策树支持向量机r语言
本人正在学习R语言,想利用这个平台记录自己一些自己的学习情况,方便以后查找,也想分享出来提供一些资料给同样学习R语言的同学们。(如果内容有错误,欢迎大家批评指正)1.决策树我们使用的还是RStudio自带的数据集iris。#######################决策树模型install.packages("rpart")#安装库library("rpart")dt<-function(dat
- 转换器与预估器,KNN算法,朴素贝叶斯算法,决策树,随机森林的特点,优缺点
qq_43625764
笔记KNN算法随机森林朴素贝叶斯算法机器学习算法决策树
转换器与预估器,KNN算法,朴素贝叶斯算法,决策树,随机森林的特点,优缺点1转换器与预估器实例化转换器fit_transform转换实例化预估器fit将训练集的特征值和目标值传进来fit运行完后,已经把这个模型训练出来了2KNN算法根据你的邻居来推测你的类别,如何确定谁是你的邻居(用距离公式,最常用的是欧式距离)还有曼哈顿距离–求绝对值,明可夫斯基距离(欧式距离和曼哈顿距离的一个退p=1曼哈顿距离
- 决策树、朴素贝叶斯、随机森林、支持向量机、XGBoost 和 LightGBM算法的R语言实现
生信与基因组学
生信分析项目进阶技能合集算法机器学习r语言
基本逻辑(1)使用rnorm函数生成5个特征变量x1到x5,并根据这些特征变量的线性组合生成一个二分类的响应变量y;(2)将生成的数据存储在数据框中,处理缺失值,并将响应变量转换为因子类型;(3)使用决策树、朴素贝叶斯、随机森林、支持向量机、XGBoost和LightGBM六种机器学习模型算法对数据进行训练和评估;(4)将各个模型的准确率和AUC值存储在结果数据框中,并通过柱状图展示结果。1.R包
- 每日一题之宝石组合
Ace'
算法c++
问题描述在一个神秘的森林里,住着一个小精灵名叫小蓝。有一天,他偶然发现了一个隐藏在树洞里的宝藏,里面装满了闪烁着美丽光芒的宝石。这些宝石都有着不同的颜色和形状,但最引人注目的是它们各自独特的“闪亮度”属性。每颗宝石都有一个与生俱来的特殊能力,可以发出不同强度的闪光。小蓝共找到了NN枚宝石,第ii枚宝石的“闪亮度”属性值为HiHi,小蓝将会从这NN枚宝石中选出三枚进行组合,组合之后的精美程度SS可以
- 机器学习-随机森林解析
Mr终游
机器学习机器学习随机森林人工智能
目录一、.随机森林的思想二、随机森林构建步骤1.自助采样2.特征随机选择3构建决策树4.集成预测三.随机森林的关键优势**(1)减少过拟合****(2)高效并行化****(3)特征重要性评估****(4)耐抗噪声**四.随机森林的优缺点优点缺点五.参数调优(以scikit-learn为例)波士顿房价预测一、.随机森林的思想1.通过组成多个弱学习器(决策树)形成一个学习器2.多样性增强:每颗决策树通
- R语言机器学习系列-随机森林回归代码解读
Mrrunsen
R语言大学作业机器学习回归r语言
回归问题指的是因变量或者被预测变量是连续性变量的情形,比如预测身高体重的具体数值是多少的情形。整个代码大致可以分为包、数据、模型、预测评估4个部分,接下来逐一解读。1、包部分,也就是加载各类包,包括随机森林包randomForest,数据相关包tidyverse、skimr、DataExplorer,模型评估包caret。2、数据部分,主要是读取数据,处理缺失值,转换变量类型。3、模型部分。为了对
- 深入浅出地理解-随机森林与XGBoost模型
HP-Succinum
机器学习随机森林集成学习机器学习
目录一、决策树的不足与集成学习的优势1.1决策树的缺点1.2集成学习:通过集成多个模型提升稳定性二、随机森林:通过多棵决策树减少方差2.1随机森林的基本原理2.2随机森林的优势2.3随机森林的参数调整三、XGBoost:高效且强大的Boosting方法3.1Boosting的基本原理3.2XGBoost的优化3.3XGBoost的优点四、随机森林与XGBoost的对比五、总结在机器学习的实战中,决
- 网络安全就业形式怎么样?
网络安全Ash
web安全安全
点击文末小卡片,免费获取网络安全全套资料,资料在手,涨薪更快随着人工智能、物联网、5G等技术的普及,网络安全问题变得越来越复杂和多样化,因此企业越来越重视网络安全,政府也出台了相关政策支持网络安全建设,进一步推动了网络安全行业的发展,那么网络安全就业前景如何?这是大家关心的重点,我们来探讨一下。网络安全就业前景可以说是一片光明,是一个不错的行业。没有网络安全就没有国家安全,可想网络安全有多重要。而
- 机器学习之学习笔记
孤城laugh
机器学习学习笔记人工智能python
机器学习-学习笔记1.简介2.算法3.特征工程3.1数据集3.2特征提取3.3特征预处理3.4特征降维4.分类算法4.1`sklearn`转换器和估计器4.2K-近邻算法(KNN)4.3模型选择与调优4.4朴素贝叶斯算法4.5决策树4.6集成学习方法之随机森林5.回归算法5.1线性回归5.2过拟合与欠拟合5.3岭回归5.4逻辑回归(实际上是分类算法,用于解决二分类问题)6.聚类算法1.无监督学习2
- 面试题——vector完整总结
dpf_xa_ca
常见的面试题
Vector的总结Vector底层是一个动态数组默认构造的方式是0,之后插入按照124816二倍扩容。注(GCC是二倍扩容,VS13是1.5倍扩容。原因可以考虑内存碎片和伙伴系统,内存的浪费)。《扩容后是一片新的内存,需要把旧内存空间中的所有元素都拷贝进新内存空间中去,之后再在新内存空间中的原数据的后面继续进行插入构造新元素,并且同时释放旧内存空间,并且,由于vector空间的重新配置,导致旧ve
- 机器学习_PySpark-3.0.3随机森林回归(RandomForestRegressor)实例
Mostcow
数据分析Python机器学习随机森林回归大数据
机器学习_PySpark-3.0.3随机森林回归(RandomForestRegressor)实例随机森林回归(RandomForestRegression):任务类型:随机森林回归主要用于回归任务。在回归任务中,算法试图预测一个连续的数值输出,而不是一个离散的类别。输出:随机森林回归的输出是一个连续的数值,表示输入数据的预测结果。算法原理:随机森林回归同样基于决策树,但在回归任务中,每个决策树的
- 机器学习_Scikit-Learn随机森林回归(RandomForestRegressor)实例
Mostcow
Python数据分析机器学习scikit-learn随机森林回归算法
机器学习_Scikit-Learn随机森林回归(RandomForestRegressor)实例随机森林回归(RandomForestRegression):随机森林是一种集成学习方法,它通过构建多个决策树来进行预测。它对于处理大量特征、非线性关系和避免过拟合都有一定的优势。在Python中,你可以使用Scikit-learn库中的RandomForestRegressor来实现。随机森林回归作为
- PTA 最小生成树与拓扑排序
abyss_miracle
数据结构基础数据结构c++
最小生成树特点:1.是一棵树。无回路,N个顶点有N-1条边。2.是生成树。包含全部顶点,N-1条边都在图里。3.边的权重和最小。主要包括两种算法,一种是让小树慢慢长大的Prim算法(先定一个顶点为起点,然后每次都找到离这棵树最近的那个顶点,将他归进树内,直到正好用掉顶点数N-1条边)。二是Kruskal算法,将一个个森林(一开始每个节点都是森林)连成树。每次在图中找所有的边中权重最小的那个边,将其
- 编程小白冲Kaggle每日打卡(17)--kaggle学堂:<机器学习简介>随机森林
AZmax01
编程小白冲Kaggle每日打卡机器学习随机森林人工智能
Kaggle官方课程链接:RandomForests本专栏旨在Kaggle官方课程的汉化,让大家更方便地看懂。RandomForests使用更复杂的机器学习算法。介绍决策树给你留下了一个艰难的决定。一棵有很多叶子的深树会被过度拟合,因为每一个预测都来自它叶子上少数房子的历史数据。但是,叶子很少的浅树表现不佳,因为它无法在原始数据中捕捉到尽可能多的区别。即使是当今最复杂的建模技术也面临着欠拟合和过拟
- ram与flash你知道多少?
华维单片机编程
单片机ramflash内存分配与c语言变量的存储位置
一电脑程序运行过程与单片机的区别我们平常使用的电脑的程序是存储在磁盘中的,由于磁盘的读取速度很慢,所以为了避免程序阻塞,电脑在程序执行之前,会把整个代码复制到内存中,CPU从内存中读取指令,然后去运行。为了合理利用和规划内存资源,除了操作系统的内存管理外,最重要的是内存的分段。对每一个进程,操作系统都会为其分配一片内存,同时将其分段为代码段、数据段、堆栈段等等,不同的段具有不同的属性。电脑的运行模
- 云计算相关工作岗位有哪些,薪资怎么样?
欧米说云
云计算腾讯云阿里云云计算
云计算、大数据、人工智能作为新一代信息技术产业,未来发展前景不可估量,就业前途一片光明,自然薪资待遇也不会差。随着亚马逊云、阿里云、华为云等云厂商的快速发展,也产生了大量的岗位需求,同时厂商为了增强自身影响力,也设置了很多证书考试,acp、ace、hcip、hcie等等。在这里想进入相关行业大厂从事云相关的工作的同学可以先考取大厂的对应证书,增加自己简历含金量,从而进入大厂。免费领取阿里云华为认证
- Python编码系列—Python原型模式:深克隆与高效复制的艺术
学步_技术
Python编码python原型模式开发语言
欢迎来到我的技术小筑,一个专为技术探索者打造的交流空间。在这里,我们不仅分享代码的智慧,还探讨技术的深度与广度。无论您是资深开发者还是技术新手,这里都有一片属于您的天空。让我们在知识的海洋中一起航行,共同成长,探索技术的无限可能。探索专栏:学步_技术的首页——持续学习,不断进步,让学习成为我们共同的习惯,让总结成为我们前进的动力。技术导航:人工智能:深入探讨人工智能领域核心技术。自动驾驶:分享自动
- 基于RF随机森林机器学习算法的回归预测模型MATLAB代码实现了一个回归任务的决策树集成模型。
qq924711725
仿真模型机器学习算法随机森林
基于RF随机森林机器学习算法的回归预测模型MATLAB代码实现了一个回归任务的决策树集成模型。首先从Excel文件中导入数据集,并将数据划分为训练集和测试集。然后,对数据进行归一化处理并转置以适应模型的要求。文章目录MATLAB代码实现说明:MATLAB代码实现说明:运行代码前的注意事项:示例输出:MATLAB代码实现说明:示例输出:以下是一个基于随机森林(RF,RandomForest)机器学习
- 机器学习与深度学习资料
JasonDing1354
【MachineLearning】
《BriefHistoryofMachineLearning》介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机、神经网络、决策树、SVM、Adaboost到随机森林、DeepLearning.《DeepLearninginNeuralNetworks:AnOverview》介绍:这是瑞士人工智能实验室JurgenSchmidhuber写的最新版本《神经网络与深度学习综述》本综述的特点是以
- 无人设备遥控器之视频回传篇
SKYDROID云卓小助手
音视频人工智能电脑计算机视觉网络
无人设备遥控器的视频回传是指将无人设备(如无人机)采集到的视频信号传输回遥控器或其他接收设备的过程。这一技术在诸多应急情境中显得尤为重要,如森林防火、消防救援、防汛等,它能为指挥中心的决策者、调度系统以及AI分析等提供实时画面。一、主流视频回传方式目前,主流的视频回传方式是利用遥控器的4G/5G上网功能。具体流程为:无人机通过空中的图传系统将影像传输至遥控器,再经由遥控器重新编码后,利用4G/5G
- 【C++】探索Vector:灵活的数据存储解决方案
星霜旅人
C++c++
什么都无法舍弃的人,什么也改变不了。前言这是我自己学习C++的第六篇博客总结。后期我会继续把C++学习笔记开源至博客上。上一期笔记是关于C++的string类知识,没看的同学可以过去看看:【C++】代码森林中的STL宝藏工具箱---string类_c++工具箱-CSDN博客https://blog.csdn.net/hsy1603914691/article/details/143967928?s
- QILSTE H4-405FO超亮橙光LED灯珠 发光二极管LED
QILSTE LED
科技
型号H4-105FO/5M,一款超亮橙光LED,以其1.0×0.5×0.4mm的迷你外观尺寸,携带着透明平面胶体(WaterClearFlatMold),在电子设备中的应用潜力不容小觑。这款LED,符合EIA标准包装,是环保的绿色产品,符合ROHS要求,并且拥有Level3的防潮等级。在技术参数的森林中,我们首先被其最大绝对额定值所吸引。消耗功率(PowerDissipation,Pd)仅为65m
- 如果你在这样的技术部,你咋办?
它像一个锈迹斑斑的铁柱,挪了它,会立马塌一片房。不挪它,又不敢在上面推陈出新。如今是一边定钉子加固,一边试探着放一把椅子,太难了……年会如期进行,在今年严峻的经济形势下,公司今年的营收和利润,相比去年都有大于30%的增长。这主要得益于老板有个原则:员工要比公司挣得多。也就是今年公司增幅10%,员工收入也要比去年增10%。但是,这个增长不是针对所有人,而是那些挣钱的部门。老板拉来一堆现金,在年会现场
- 考研系列-数据结构第五章:树与二叉树(下)
Nelson_hehe
#数据结构笔记数据结构哈夫曼树树森林树的遍历森林遍历并查集
目录前情提要:树的逻辑结构1.树的存储结构(1)双亲表示法(2)孩子表示法(3)孩子兄弟表示法(4)总结2.树、森林与二叉树的转换(1)树转二叉树(2)森林转二叉树(3)二叉树转树(4)二叉树转森林(5)总结3.树的遍历(1)先根遍历(2)后根遍历(3)层次遍历4.森林的遍历(1)森林的先序遍历(2)森林的中序遍历5.树与森林遍历的知识点总结6.易错习题总结(1)选择题(2)简答题二、树与二叉树的
- JAVA基础
灵静志远
位运算加载Date字符串池覆盖
一、类的初始化顺序
1 (静态变量,静态代码块)-->(变量,初始化块)--> 构造器
同一括号里的,根据它们在程序中的顺序来决定。上面所述是同一类中。如果是继承的情况,那就在父类到子类交替初始化。
二、String
1 String a = "abc";
JAVA虚拟机首先在字符串池中查找是否已经存在了值为"abc"的对象,根
- keepalived实现redis主从高可用
bylijinnan
redis
方案说明
两台机器(称为A和B),以统一的VIP对外提供服务
1.正常情况下,A和B都启动,B会把A的数据同步过来(B is slave of A)
2.当A挂了后,VIP漂移到B;B的keepalived 通知redis 执行:slaveof no one,由B提供服务
3.当A起来后,VIP不切换,仍在B上面;而A的keepalived 通知redis 执行slaveof B,开始
- java文件操作大全
0624chenhong
java
最近在博客园看到一篇比较全面的文件操作文章,转过来留着。
http://www.cnblogs.com/zhuocheng/archive/2011/12/12/2285290.html
转自http://blog.sina.com.cn/s/blog_4a9f789a0100ik3p.html
一.获得控制台用户输入的信息
&nbs
- android学习任务
不懂事的小屁孩
工作
任务
完成情况 搞清楚带箭头的pupupwindows和不带的使用 已完成 熟练使用pupupwindows和alertdialog,并搞清楚两者的区别 已完成 熟练使用android的线程handler,并敲示例代码 进行中 了解游戏2048的流程,并完成其代码工作 进行中-差几个actionbar 研究一下android的动画效果,写一个实例 已完成 复习fragem
- zoom.js
换个号韩国红果果
oom
它的基于bootstrap 的
https://raw.github.com/twbs/bootstrap/master/js/transition.js transition.js模块引用顺序
<link rel="stylesheet" href="style/zoom.css">
<script src=&q
- 详解Oracle云操作系统Solaris 11.2
蓝儿唯美
Solaris
当Oracle发布Solaris 11时,它将自己的操作系统称为第一个面向云的操作系统。Oracle在发布Solaris 11.2时继续它以云为中心的基调。但是,这些说法没有告诉我们为什么Solaris是配得上云的。幸好,我们不需要等太久。Solaris11.2有4个重要的技术可以在一个有效的云实现中发挥重要作用:OpenStack、内核域、统一存档(UA)和弹性虚拟交换(EVS)。
- spring学习——springmvc(一)
a-john
springMVC
Spring MVC基于模型-视图-控制器(Model-View-Controller,MVC)实现,能够帮助我们构建像Spring框架那样灵活和松耦合的Web应用程序。
1,跟踪Spring MVC的请求
请求的第一站是Spring的DispatcherServlet。与大多数基于Java的Web框架一样,Spring MVC所有的请求都会通过一个前端控制器Servlet。前
- hdu4342 History repeat itself-------多校联合五
aijuans
数论
水题就不多说什么了。
#include<iostream>#include<cstdlib>#include<stdio.h>#define ll __int64using namespace std;int main(){ int t; ll n; scanf("%d",&t); while(t--)
- EJB和javabean的区别
asia007
beanejb
EJB不是一般的JavaBean,EJB是企业级JavaBean,EJB一共分为3种,实体Bean,消息Bean,会话Bean,书写EJB是需要遵循一定的规范的,具体规范你可以参考相关的资料.另外,要运行EJB,你需要相应的EJB容器,比如Weblogic,Jboss等,而JavaBean不需要,只需要安装Tomcat就可以了
1.EJB用于服务端应用开发, 而JavaBeans
- Struts的action和Result总结
百合不是茶
strutsAction配置Result配置
一:Action的配置详解:
下面是一个Struts中一个空的Struts.xml的配置文件
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
&quo
- 如何带好自已的团队
bijian1013
项目管理团队管理团队
在网上看到博客"
怎么才能让团队成员好好干活"的评论,觉得写的比较好。 原文如下: 我做团队管理有几年了吧,我和你分享一下我认为带好团队的几点:
1.诚信
对团队内成员,无论是技术研究、交流、问题探讨,要尽可能的保持一种诚信的态度,用心去做好,你的团队会感觉得到。 2.努力提
- Java代码混淆工具
sunjing
ProGuard
Open Source Obfuscators
ProGuard
http://java-source.net/open-source/obfuscators/proguardProGuard is a free Java class file shrinker and obfuscator. It can detect and remove unused classes, fields, m
- 【Redis三】基于Redis sentinel的自动failover主从复制
bit1129
redis
在第二篇中使用2.8.17搭建了主从复制,但是它存在Master单点问题,为了解决这个问题,Redis从2.6开始引入sentinel,用于监控和管理Redis的主从复制环境,进行自动failover,即Master挂了后,sentinel自动从从服务器选出一个Master使主从复制集群仍然可以工作,如果Master醒来再次加入集群,只能以从服务器的形式工作。
什么是Sentine
- 使用代理实现Hibernate Dao层自动事务
白糖_
DAOspringAOP框架Hibernate
都说spring利用AOP实现自动事务处理机制非常好,但在只有hibernate这个框架情况下,我们开启session、管理事务就往往很麻烦。
public void save(Object obj){
Session session = this.getSession();
Transaction tran = session.beginTransaction();
try
- maven3实战读书笔记
braveCS
maven3
Maven简介
是什么?
Is a software project management and comprehension tool.项目管理工具
是基于POM概念(工程对象模型)
[设计重复、编码重复、文档重复、构建重复,maven最大化消除了构建的重复]
[与XP:简单、交流与反馈;测试驱动开发、十分钟构建、持续集成、富有信息的工作区]
功能:
- 编程之美-子数组的最大乘积
bylijinnan
编程之美
public class MaxProduct {
/**
* 编程之美 子数组的最大乘积
* 题目: 给定一个长度为N的整数数组,只允许使用乘法,不能用除法,计算任意N-1个数的组合中乘积中最大的一组,并写出算法的时间复杂度。
* 以下程序对应书上两种方法,求得“乘积中最大的一组”的乘积——都是有溢出的可能的。
* 但按题目的意思,是要求得这个子数组,而不
- 读书笔记-2
chengxuyuancsdn
读书笔记
1、反射
2、oracle年-月-日 时-分-秒
3、oracle创建有参、无参函数
4、oracle行转列
5、Struts2拦截器
6、Filter过滤器(web.xml)
1、反射
(1)检查类的结构
在java.lang.reflect包里有3个类Field,Method,Constructor分别用于描述类的域、方法和构造器。
2、oracle年月日时分秒
s
- [求学与房地产]慎重选择IT培训学校
comsci
it
关于培训学校的教学和教师的问题,我们就不讨论了,我主要关心的是这个问题
培训学校的教学楼和宿舍的环境和稳定性问题
我们大家都知道,房子是一个比较昂贵的东西,特别是那种能够当教室的房子...
&nb
- RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系
daizj
oraclermanfilespersetPARALLELISM
RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系 转
PARALLELISM ---
我们还可以通过parallelism参数来指定同时"自动"创建多少个通道:
RMAN > configure device type disk parallelism 3 ;
表示启动三个通道,可以加快备份恢复的速度。
- 简单排序:冒泡排序
dieslrae
冒泡排序
public void bubbleSort(int[] array){
for(int i=1;i<array.length;i++){
for(int k=0;k<array.length-i;k++){
if(array[k] > array[k+1]){
- 初二上学期难记单词三
dcj3sjt126com
sciet
concert 音乐会
tonight 今晚
famous 有名的;著名的
song 歌曲
thousand 千
accident 事故;灾难
careless 粗心的,大意的
break 折断;断裂;破碎
heart 心(脏)
happen 偶尔发生,碰巧
tourist 旅游者;观光者
science (自然)科学
marry 结婚
subject 题目;
- I.安装Memcahce 1. 安装依赖包libevent Memcache需要安装libevent,所以安装前可能需要执行 Shell代码 收藏代码
dcj3sjt126com
redis
wget http://download.redis.io/redis-stable.tar.gz
tar xvzf redis-stable.tar.gz
cd redis-stable
make
前面3步应该没有问题,主要的问题是执行make的时候,出现了异常。
异常一:
make[2]: cc: Command not found
异常原因:没有安装g
- 并发容器
shuizhaosi888
并发容器
通过并发容器来改善同步容器的性能,同步容器将所有对容器状态的访问都串行化,来实现线程安全,这种方式严重降低并发性,当多个线程访问时,吞吐量严重降低。
并发容器ConcurrentHashMap
替代同步基于散列的Map,通过Lock控制。
&nb
- Spring Security(12)——Remember-Me功能
234390216
Spring SecurityRemember Me记住我
Remember-Me功能
目录
1.1 概述
1.2 基于简单加密token的方法
1.3 基于持久化token的方法
1.4 Remember-Me相关接口和实现
- 位运算
焦志广
位运算
一、位运算符C语言提供了六种位运算符:
& 按位与
| 按位或
^ 按位异或
~ 取反
<< 左移
>> 右移
1. 按位与运算 按位与运算符"&"是双目运算符。其功能是参与运算的两数各对应的二进位相与。只有对应的两个二进位均为1时,结果位才为1 ,否则为0。参与运算的数以补码方式出现。
例如:9&am
- nodejs 数据库连接 mongodb mysql
liguangsong
mongodbmysqlnode数据库连接
1.mysql 连接
package.json中dependencies加入
"mysql":"~2.7.0"
执行 npm install
在config 下创建文件 database.js
- java动态编译
olive6615
javaHotSpotjvm动态编译
在HotSpot虚拟机中,有两个技术是至关重要的,即动态编译(Dynamic compilation)和Profiling。
HotSpot是如何动态编译Javad的bytecode呢?Java bytecode是以解释方式被load到虚拟机的。HotSpot里有一个运行监视器,即Profile Monitor,专门监视
- Storm0.9.5的集群部署配置优化
roadrunners
优化storm.yaml
nimbus结点配置(storm.yaml)信息:
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional inf
- 101个MySQL 的调节和优化的提示
tomcat_oracle
mysql
1. 拥有足够的物理内存来把整个InnoDB文件加载到内存中——在内存中访问文件时的速度要比在硬盘中访问时快的多。 2. 不惜一切代价避免使用Swap交换分区 – 交换时是从硬盘读取的,它的速度很慢。 3. 使用电池供电的RAM(注:RAM即随机存储器)。 4. 使用高级的RAID(注:Redundant Arrays of Inexpensive Disks,即磁盘阵列
- zoj 3829 Known Notation(贪心)
阿尔萨斯
ZOJ
题目链接:zoj 3829 Known Notation
题目大意:给定一个不完整的后缀表达式,要求有2种不同操作,用尽量少的操作使得表达式完整。
解题思路:贪心,数字的个数要要保证比∗的个数多1,不够的话优先补在开头是最优的。然后遍历一遍字符串,碰到数字+1,碰到∗-1,保证数字的个数大于等1,如果不够减的话,可以和最后面的一个数字交换位置(用栈维护十分方便),因为添加和交换代价都是1