Leetcode 72 编辑距离

编辑距离

题目

给你两个单词 word1word2,请你计算出将 word1 转换成 word2 所使用的最少操作数 。

你可以对一个单词进行如下三种操作:

  1. 插入一个字符
  2. 删除一个字符
  3. 替换一个字符
  • 示例1:

    输入:word1 = "horse", word2 = "ros"
    输出:3
    解释:
    horse -> rorse (将 'h' 替换为 'r')
    rorse -> rose (删除 'r')
    rose -> ros (删除 'e')
    
  • 示例2:

    输入:word1 = "intention", word2 = "execution"
    输出:5
    解释:
    intention -> inention (删除 't')
    inention -> enention (将 'i' 替换为 'e')
    enention -> exention (将 'n' 替换为 'x')
    exention -> exection (将 'n' 替换为 'c')
    exection -> execution (插入 'u')
    

解答

  • 思路:

    • 使用动态规划;

    • 定义状态:dp[i][j] => word1前i个字符构成的子串与word2前j个字符构成的子串的编辑距离;

    • base case => dp[i][0] = i, dp[0][j] = j => 表示其中一个子串为空的情形;

    • 状态转移方程:

      f(i, j) = \begin{cases}i, &j == 0 \\ j, &i == 0 \\ f(i - 1, j - 1), &i > 0 \mbox{ && } j > 0 \mbox{ && } \mbox{word1}[i] == \mbox{word2}[j] \\ 1 + min\{f(i - 1, j - 1), f(i - 1, j), f(i, j - 1)\}, & i > 0 \mbox{ && } j > 0 \mbox{ && } \mbox{word1}[i] != \mbox{word2}[j]\end{cases}

    • 可以参考 => https://labuladong.gitbook.io/algo/dong-tai-gui-hua-xi-lie/bian-ji-ju-li

  • 代码:

    def minDistance(self, word1, word2):
        """
        :type word1: str
        :type word2: str
        :rtype int
    
        (knowledge)
    
        思路:
            其实总共有四种操作,插入、删除、替换和什么都不操作
        1. 使用动态规划;
        2. 定义状态:dp[i][j] => word1前i个字符构成的子串与word2前j个字符构成的子串的编辑距离;
        3. base case => dp[i][0] = i, dp[0][j] = j => 表示其中一个子串为空的情形
        4. 状态转移方程:
            f(i, j) =   j                             i == 0
                        i                             j == 0
                        f(i - 1, j - 1)               i > 0 && j > 0 && word1[i] == word2[j]
                        min {                         i > 0 && j > 0 && word1[i] != word2[j]  
                            f(i - 1, j) + 1,
                            f(i, j - 1) + 1,
                            f(i - 1, j - 1) + 1
                        }
    
        tip: 可以参考 => https://labuladong.gitbook.io/algo/dong-tai-gui-hua-xi-lie/bian-ji-ju-li
        """
        m, n = len(word1), len(word2)
        dp = [[0] * (n + 1) for i in range(m + 1)]
    
        for i in range(1, m + 1):
            dp[i][0] = i
    
        for j in range(1, n + 1):
            dp[0][j] = j
    
        for i in range(1, m + 1):
            for j in range(1, n + 1):
                if word1[i - 1] == word2[j - 1]:
                    dp[i][j] = dp[i - 1][j - 1]
                else:
                    dp[i][j] = min(
                        dp[i - 1][j] + 1,
                        dp[i][j - 1] + 1,
                        dp[i - 1][j - 1] + 1
                    )
    
        return dp[-1][-1]
    

测试验证

class Solution:
    def minDistance(self, word1, word2):
        """
        :type word1: str
        :type word2: str
        :rtype int

        (knowledge)

        思路:
            其实总共有四种操作,插入、删除、替换和什么都不操作
        1. 使用动态规划;
        2. 定义状态:dp[i][j] => word1前i个字符构成的子串与word2前j个字符构成的子串的编辑距离;
        3. base case => dp[i][0] = i, dp[0][j] = j => 表示其中一个子串为空的情形
        4. 状态转移方程:
            f(i, j) =   j                             i == 0
                        i                             j == 0
                        f(i - 1, j - 1)               i > 0 && j > 0 && word1[i] == word2[j]
                        min {                         i > 0 && j > 0 && word1[i] != word2[j]  
                            f(i - 1, j) + 1,
                            f(i, j - 1) + 1,
                            f(i - 1, j - 1) + 1
                        }

        tip: 可以参考 => https://labuladong.gitbook.io/algo/dong-tai-gui-hua-xi-lie/bian-ji-ju-li
        """
        m, n = len(word1), len(word2)
        dp = [[0] * (n + 1) for i in range(m + 1)]

        for i in range(1, m + 1):
            dp[i][0] = i

        for j in range(1, n + 1):
            dp[0][j] = j

        for i in range(1, m + 1):
            for j in range(1, n + 1):
                if word1[i - 1] == word2[j - 1]:
                    dp[i][j] = dp[i - 1][j - 1]
                else:
                    dp[i][j] = min(
                        dp[i - 1][j] + 1,
                        dp[i][j - 1] + 1,
                        dp[i - 1][j - 1] + 1
                    )

        return dp[-1][-1]


if __name__ == '__main__':
    solution = Solution()
    print(solution.minDistance("horse", "ros"), "= 3")
    print(solution.minDistance("intention", "execution"), "= 5")

你可能感兴趣的:(Leetcode 72 编辑距离)