- 4×4矩阵键盘详解(STM32)
辰哥单片机设计
STM32传感器教学矩阵计算机外设stm32嵌入式硬件单片机传感器
目录一、介绍二、传感器原理1.原理图2.工作原理介绍三、程序设计main.c文件button4_4.h文件button4_4.c文件四、实验效果五、资料获取项目分享一、介绍矩阵键盘,又称为行列式键盘,是用4条I/O线作为行线,4条I/O线作为列线组成的键盘。在行线和列线的每一个交叉点上设置一个按键,因此键盘中按键的个数是4×4个。这种行列式键盘结构能够有效地提高单片机系统中I/O口的利用率,节约单
- 三对角线型行列式的求法
Mr-Apple
笔记线性代数矩阵算法
三对角线型行列式摘要典型例题练习题参考答案摘要笔者在复习高等代数行列式这章时,发现三对角行列式问题是行列式计算中经常出现的一类行列式,部分考研院校也曾直接出过三对角行列式的计算,亦或是三对角行列式的变体问题.本文主要介绍了一种通常情况下三对角行列式的解法,即采用特征根法来求解行列式的通项公式.例1:计算nnn阶行列式(ac≠0)(ac\neq0)(ac=0)Dn=∣bc0…000abc…0000
- 线性代数——特征值与特征向量的性质
lwh 98+106
线性代数算法机器学习
(1)设A为方阵,则A与ATA^{T}AT有相同的特征值。此处用到了两个关键性质,一:单位阵的转置为其本身,二:转置并不改变行列式的值。(2):设n阶方阵A=(aija_{ij}aij)的n个特征值为λ1\lambda_{1}λ1,λ2\lambda_{2}λ2,…λn\lambda_{n}λn,则λ1+λ2+λ3+...λn=a11+a22+a33+...+ann\lambda_{1}+\lam
- 高等代数精解【9】
叶绿先锋
基础数学与应用数学线性代数矩阵
文章目录向量空间与矩阵矩阵的行列式矩阵A的秩保持不变方阵的行列式线性无关的条件1.线性组合为零向量的唯一性2.矩阵的秩3.几何解释(对于二维和三维空间)4.行列式(对于方阵)总结矩阵的非零子式基础重要性例子注意事项非奇异矩阵(也称为可逆矩阵或满秩矩阵)定义性质例子结论逆矩阵的计算高斯-约旦消元法Julia代码使用伴随矩阵和行列式的倒数来计算逆矩阵参考文献向量空间与矩阵矩阵的行列式矩阵A的秩保持不变
- 数学基础 -- 线性代数之伴随矩阵
sz66cm
线性代数矩阵
伴随矩阵1.代数余子式首先我们需要理解什么是代数余子式。对于一个n×nn\timesnn×n的方阵AAA,代数余子式MijM_{ij}Mij是指从矩阵AAA中删除第iii行和第jjj列后,剩下的子矩阵的行列式。假设有一个3×33\times33×3的矩阵:A=(a11a12a13a21a22a23a31a32a33)A=\begin{pmatrix}a_{11}&a_{12}&a_{13}\\a_
- 高数知识补充----矩阵、行列式、数学符号
chxin14016
笔记高数算法线性代数
矩阵计算参考链接:矩阵如何运算?——线性代数_矩阵计算-CSDN博客矩阵计算:【前找行,后找列,相乘相加】。行列式计算参考链接:实用的行列式计算方法——线性代数(det)_det线性代数-CSDN博客参考链接:行列式的计算方法(含四种,看完就会!)-CSDN博客一、对角线法▍以三阶行列式为例:①将第一、二列平移到行列式右侧②如图做出六条斜对角线③对角线上的元素相乘,红色相加的和减去蓝色相加的和D3
- 数学基础 -- 线性代数之行列式不变性推导
sz66cm
线性代数
行列式不变性的推导我们要证明:给矩阵的一行(或列)加上另一行(或列)的倍数,这种操作不会改变行列式的值。问题描述假设我们有一个矩阵AAA,其大小为3×33\times33×3,如果我们将其第1行加上第2行的倍数,得到新的矩阵A′A'A′。我们需要证明矩阵AAA的行列式和矩阵A′A'A′的行列式是相等的。给定矩阵AAA如下:A=(a11a12a13a21a22a23a31a32a33)A=\begi
- 第2章 线性代数
His Last Bow
#深度学习线性代数机器学习深度学习人工智能算法
目录1.标量、向量、矩阵和张量2.矩阵和向量相乘3.单位矩阵和逆矩阵4.线性相关和生成子空间5.范数6.特殊类型的矩阵和向量7.特征分解8.奇异值分解9.Moore-Penrose伪逆10.迹运算11.行列式1.标量、向量、矩阵和张量标量(scalar):数向量(vector):一列数x=[x1x2...xn]x=\begin{bmatrix}x_1\\x_2\\.\\.\\.\\x_n\end{
- 向量的内积、外积、混合积、行列式,以及它们的几何意义 (还有 数量积、点乘、向量积、叉乘)
shimly123456
数学复习线性代数
参考视频1(数量积向量积混合积内积外积):https://www.bilibili.com/video/BV1kL4y1e78T/?vd_source=7a1a0bc74158c6993c7355c5490fc600参考视频2(线性代数:内积、外积、行列式、特征值):https://www.bilibili.com/video/BV16J411J7yF/?vd_source=7a1a0bc7415
- 齐次方程是否有非零解,和它的系数矩阵行列式的关系
shimly123456
数学复习矩阵线性代数
视频来源:https://www.bilibili.com/video/BV1vY4y1J7gd/?spm_id_from=333.337.search-card.all.click&vd_source=7a1a0bc74158c6993c7355c5490fc6004:22有这么一句话,如下图对于齐次方程,若系数矩阵的行列式为零,则方程有非零解在求解矩阵的特征向量时,行列式的这个性质可以用来判断
- 摆(行列式、杜教筛)
dygxczn
线性代数
有一个n×nn\timesnn×n的矩阵AAA,满足:Ai,j={1i=j0i≠j∧i∣jCotherwiseA_{i,j}=\begin{cases}1&i=j\\0&i\not=j\landi\midj\\C&\text{otherwise}\end{cases}Ai,j=⎩⎨⎧10Ci=ji=j∧i∣jotherwise求det(A)\det(A)det(A)。答案模998244353
- Cayley-Hamilton定理(凯莱-哈密顿定理)
啵啵啵啵哲
数学笔记线性代数
1.定义(1)符号定义单位矩阵为III,矩阵AAA的行列式记作det(A)\det\left(A\right)det(A),伴随矩阵记作adj(A)\mathrm{adj}\left(A\right)adj(A).(2)特征多项式矩阵AAA的特征多项式定义为:χA(s)≜det(sI−A)=sn+d1sn−1+⋯+dn,\chi_A\left(s\right)\triangleq\det\le
- 线代:认识行列式、矩阵和向量
路溪非溪
矩阵机器学习线性代数
本文主要参考的视频教程如下:8小时学完线代【中国大学MOOC*小元老师】线性代数速学_哔哩哔哩_bilibili另外这个视频可以作为补充:【考研数学线性代数基础课】—全集_哔哩哔哩_bilibili行列式的概念和定义一般会由方程组来引出行列式比如一个二阶行列式二阶行列式的计算就是主对角线的乘积减去副对角线的乘积;再看看三阶行列式举个例子帮助理解行列式越往高阶越复杂。二阶和三阶的尚且可以通过上面的方
- 线性代数第9版英文pdf_线性代数(英文版·第9版)
weixin_39726044
线性代数第9版英文pdf
《线性代数(英文版·第9版)》结合大量应用和实例详细介绍线性代数的基本概念、基本定理与知识点,主要内容包括:矩阵与方程组、行列式、向量空间、线性变换、正交性、特征值和数值线性代数等。为巩固所学的基本概念和基本定理,书中每一节后都配有练习题,并在每一章后提供了MATLAB练习题和测试题。StevenJ.Leon1971年于密歇根州立大学数学系获得博士学位,现为马萨诸塞大学达特茅斯分校数学系首席教授,
- armadillo matlab,Armadillo之计算矩阵的行列式(determinant)
三七二十
armadillomatlab
计算矩阵的行列式很简单,用det方法或是log_det方法1det(A)如果A不是方阵的(square),将抛出std::logic_error异常例:matm="3,2,4;1,-2,3;2,3,2;";doubled=det(m);cout<运行结果是-32log_det(value,sign,A)文档里推荐当矩阵A比较大时,使用本函数来代替det函数(估计会加快计算速度)det(A)=exp
- 矩阵迹(trace), 行列式(determinate)(转载)
TanJXzzZ
线性代数矩阵机器学习
1.迹(trace)矩阵的迹(trace)表示矩阵AAA主对角线所有元素的和迹的来源最根本的应该就是迹和特征值的和相等。因为特征值如此重要,所以才定义了迹。离开了这一点,我觉得迹也就失去了立足点。迹与特征值一直在用迹等于特征值的和来求特征值,但从来没有想过二者究竟是怎么联系起来的。没事儿就重新推了一遍。一元二次方程的根与系数的关系先看一元二次方程。推广至一元n次方程特征值分开来写就是:其实质也是一
- 矩阵迹(trace), 行列式(determinate)
Anne033
BasicMath
1.迹(trace)矩阵的迹(trace)表示矩阵AAA主对角线所有元素的和迹的来源最根本的应该就是迹和特征值的和相等。因为特征值如此重要,所以才定义了迹。离开了这一点,我觉得迹也就失去了立足点。迹与特征值一直在用迹等于特征值的和来求特征值,但从来没有想过二者究竟是怎么联系起来的。没事儿就重新推了一遍。一元二次方程的根与系数的关系先看一元二次方程。推广至一元n次方程特征值分开来写就是:其实质也是一
- 通过C#实现矩阵求逆-简单版
傲娇邂逅双马尾.
矩阵线性代数c#
网上大部分C#实现矩阵求逆都比较复杂,现在在这里分享一种很好理解的矩阵求逆方法,而且可以适用于任何形式的可逆矩阵求逆,但是肯定运行效率不如其它的算法,正所谓鱼和熊掌不可兼得。我们采用的是通过单位矩阵变换的这种方法来实现的,话不多说,下面解释实现原理。将需要变化的矩阵与单位矩阵拼在一起形成增广矩阵。A为需要求逆的矩阵,E为单位矩阵。如图然后我们经过初等行列式变换,将增广矩阵左半部分变为单位矩阵,那么
- C#,数值计算,矩阵的行列式(Determinant)、伴随矩阵(Adjoint)与逆矩阵(Inverse)的算法与源代码
深度混淆
C#算法演义AlgorithmRecipesC#数值计算NumericalRecipes线性代数矩阵行列式伴随矩阵矩阵求逆
本文发布矩阵(Matrix)的一些初级算法。一、矩阵的行列式(Determinant)矩阵行列式是指矩阵的全部元素构成的行列式,设A=(a)是数域P上的一个n阶矩阵,则所有A=(a)中的元素组成的行列式称为矩阵A的行列式,记为|A|或det(A)。若A,B是数域P上的两个n阶矩阵,k是P中的任一个数,则|AB|=|A||B|,|kA|=kⁿ|A|,|A*|=|A|,其中A*是A的伴随矩阵;若A是可
- λ-矩阵(不变因子)
橘子蜂蜜
高等代数
λ-矩阵的标准形是唯一的.定义5设λ-矩阵的秩为r,对于正整数中必有非零的k级子式,中全部k级子式的首项系数为1的最大公因式称为的k级行列式因子。对于秩为r的λ-矩阵,行列式因子一共有r个,行列式因子的意义在于初等变换下是不变的。定理3:等价的λ-矩阵具有相同的秩与相同的各级行列式因子。现在来计算标准形矩阵的行列式因子,设标准形为
- 实验七matlab数值计算,数学应用软件实验报告---MATLAB的数值计算
雪鱼子
实验七matlab数值计算
一,实验目的1.掌握MATLAB矩阵分析的命令和方法;2.掌握MATLAB多项式运算的命令和访求;3.掌握MATLAB数值微积分的运算方法。二,实验原理1.矩阵分析矩阵转置:单引号(’)矩阵的旋转:rot90(A,k),功能是将矩阵A旋转90度的k倍,缺省值是1矩阵的左右翻转:fliplr(A)矩阵的上下翻转:flipud(A)矩阵的逆:inv(A),与A^(-1)等价矩阵的行列式:det(A)矩
- NumPy 线性代数
weixin_30249203
python
NumPy线性代数NumPy提供了线性代数函数库linalg,该库包含了线性代数所需的所有功能,可以看看下面的说明:函数描述dot两个数组的点积,即元素对应相乘。vdot两个向量的点积inner两个数组的内积matmul两个数组的矩阵积determinant数组的行列式solve求解线性矩阵方程inv计算矩阵的乘法逆矩阵numpy.dot()numpy.dot()对于两个一维的数组,计算的是这两个
- 行列式求值(C++)
龙行泽雨
计算方法c++线性代数
对于行列式的求值主要有三种方法:①对角线相乘②行列式展开③代数余子式计算。对角线相乘对角线相乘需要行列式满足特定的要求,如上三角、下三角或者对角阵,否则不能直接使用此方法。如果需要使用这个方法,则需要对行列式进行初等行变换,直到满足要求。初等行变换性质:交换任意两行,行列式的值变为相反数。把某一行乘以一个非零数加到另外一行行列式的值不变。行列式转置后,行列式的值不变,因此上述性质同样适用于列变换的
- 行列式
想做你的太阳
1.行列式的定义2.行列式的性质3.各种行列式类型的计算4.行列式展开5.克拉默法则齐次方程:行列式不为零非齐次方程:
- C语言判断输入的字符串中括号是否成对匹配
水智
练习题c语言开发语言学习青少年编程算法
文章目录1-15题题目16题目16参考答案1题目16参考答案21-15题C语言基础例题1-3题-指针篇C语言基础例题4-5题-二维数组篇C语言基础例题6-7题-结构体篇C语言基础例题8-9题-大作业篇C语言基础例题10-11题-计算数字个数C语言基础例题12题-链表C语言基础例题13题-字符串逆序C语言基础例题14-15题-三阶行列式题目16编写一个C程序,实现括号匹配检查的功能。给定一个只包含圆
- 高代绿皮第四版课后习题复习题一T17
czjylh
#第一章计算题精选线性代数
原题计算下列行列式的值解析思路1:利用棣莫弗公式与二项式展开对比虚部系数得到的表达式,具体类似操作见高代绿皮第四版课后习题复习题一T16-CSDN博客思路2:根据积化和差公式故可从后向前依次将利用积化和差公式化简得可提出每行每列的公因式于是其中为高代绿皮第四版课后习题复习题一T16-CSDN博客中的行列式,即可求解参考解题细节:
- 高代绿皮第四版课后习题复习题一T18
czjylh
#第一章计算题精选线性代数
原题计算下列行列式的值解析思路:升阶法+高代绿皮第四版课后习题复习题一T15-CSDN博客参考解题细节:
- 高代绿皮第四版课后习题复习题一T19
czjylh
#第一章计算题精选线性代数
原题计算下列n阶行列式的值解析思路:注意到与标准的Vandermonde行列式缺少了i次幂的列,故可构造n+1阶Vandermonde行列式即将按第n+1行展开得由于则只需求出的系数,由于为Vandermonde行列式,根据公式求得根据多项式知识可得的系数为于是故求得参考解题细节:
- 高代绿皮第四版课后习题复习题一T16
czjylh
#第一章计算题精选线性代数
原题计算下列行列式的值解析思路:利用复变函数中的欧拉公式再由棣莫弗公式可知由二项式展开公式可得提取出其实部故有于是可以利用此公式将中第3至第n列元素进行展开最后用第一列消去其余列的非最高次项后再提出后n-2列的公因式注意到最后变成了Vandermonde行列式,运用公式求解即可参考解题细节:
- 高代绿皮第四版课后习题复习题一T25
czjylh
#第一章证明题精选高等代数线性代数数学专业考研
原题设n阶行列式,是元素的代数余子式,求证:解析思路:见下参考过程与高代绿皮第四版课后习题1.5T6-CSDN博客参考解题细节:
- mondb入手
木zi_鸣
mongodb
windows 启动mongodb 编写bat文件,
mongod --dbpath D:\software\MongoDBDATA
mongod --help 查询各种配置
配置在mongob
打开批处理,即可启动,27017原生端口,shell操作监控端口 扩展28017,web端操作端口
启动配置文件配置,
数据更灵活 
- 大型高并发高负载网站的系统架构
bijian1013
高并发负载均衡
扩展Web应用程序
一.概念
简单的来说,如果一个系统可扩展,那么你可以通过扩展来提供系统的性能。这代表着系统能够容纳更高的负载、更大的数据集,并且系统是可维护的。扩展和语言、某项具体的技术都是无关的。扩展可以分为两种:
1.
- DISPLAY变量和xhost(原创)
czmmiao
display
DISPLAY
在Linux/Unix类操作系统上, DISPLAY用来设置将图形显示到何处. 直接登陆图形界面或者登陆命令行界面后使用startx启动图形, DISPLAY环境变量将自动设置为:0:0, 此时可以打开终端, 输出图形程序的名称(比如xclock)来启动程序, 图形将显示在本地窗口上, 在终端上输入printenv查看当前环境变量, 输出结果中有如下内容:DISPLAY=:0.0
- 获取B/S客户端IP
周凡杨
java编程jspWeb浏览器
最近想写个B/S架构的聊天系统,因为以前做过C/S架构的QQ聊天系统,所以对于Socket通信编程只是一个巩固。对于C/S架构的聊天系统,由于存在客户端Java应用,所以直接在代码中获取客户端的IP,应用的方法为:
String ip = InetAddress.getLocalHost().getHostAddress();
然而对于WEB
- 浅谈类和对象
朱辉辉33
编程
类是对一类事物的总称,对象是描述一个物体的特征,类是对象的抽象。简单来说,类是抽象的,不占用内存,对象是具体的,
占用存储空间。
类是由属性和方法构成的,基本格式是public class 类名{
//定义属性
private/public 数据类型 属性名;
//定义方法
publ
- android activity与viewpager+fragment的生命周期问题
肆无忌惮_
viewpager
有一个Activity里面是ViewPager,ViewPager里面放了两个Fragment。
第一次进入这个Activity。开启了服务,并在onResume方法中绑定服务后,对Service进行了一定的初始化,其中调用了Fragment中的一个属性。
super.onResume();
bindService(intent, conn, BIND_AUTO_CREATE);
- base64Encode对图片进行编码
843977358
base64图片encoder
/**
* 对图片进行base64encoder编码
*
* @author mrZhang
* @param path
* @return
*/
public static String encodeImage(String path) {
BASE64Encoder encoder = null;
byte[] b = null;
I
- Request Header简介
aigo
servlet
当一个客户端(通常是浏览器)向Web服务器发送一个请求是,它要发送一个请求的命令行,一般是GET或POST命令,当发送POST命令时,它还必须向服务器发送一个叫“Content-Length”的请求头(Request Header) 用以指明请求数据的长度,除了Content-Length之外,它还可以向服务器发送其它一些Headers,如:
- HttpClient4.3 创建SSL协议的HttpClient对象
alleni123
httpclient爬虫ssl
public class HttpClientUtils
{
public static CloseableHttpClient createSSLClientDefault(CookieStore cookies){
SSLContext sslContext=null;
try
{
sslContext=new SSLContextBuilder().l
- java取反 -右移-左移-无符号右移的探讨
百合不是茶
位运算符 位移
取反:
在二进制中第一位,1表示符数,0表示正数
byte a = -1;
原码:10000001
反码:11111110
补码:11111111
//异或: 00000000
byte b = -2;
原码:10000010
反码:11111101
补码:11111110
//异或: 00000001
- java多线程join的作用与用法
bijian1013
java多线程
对于JAVA的join,JDK 是这样说的:join public final void join (long millis )throws InterruptedException Waits at most millis milliseconds for this thread to die. A timeout of 0 means t
- Java发送http请求(get 与post方法请求)
bijian1013
javaspring
PostRequest.java
package com.bijian.study;
import java.io.BufferedReader;
import java.io.DataOutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.HttpURL
- 【Struts2二】struts.xml中package下的action配置项默认值
bit1129
struts.xml
在第一部份,定义了struts.xml文件,如下所示:
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 2.3//EN"
"http://struts.apache.org/dtds/struts
- 【Kafka十三】Kafka Simple Consumer
bit1129
simple
代码中关于Host和Port是割裂开的,这会导致单机环境下的伪分布式Kafka集群环境下,这个例子没法运行。
实际情况是需要将host和port绑定到一起,
package kafka.examples.lowlevel;
import kafka.api.FetchRequest;
import kafka.api.FetchRequestBuilder;
impo
- nodejs学习api
ronin47
nodejs api
NodeJS基础 什么是NodeJS
JS是脚本语言,脚本语言都需要一个解析器才能运行。对于写在HTML页面里的JS,浏览器充当了解析器的角色。而对于需要独立运行的JS,NodeJS就是一个解析器。
每一种解析器都是一个运行环境,不但允许JS定义各种数据结构,进行各种计算,还允许JS使用运行环境提供的内置对象和方法做一些事情。例如运行在浏览器中的JS的用途是操作DOM,浏览器就提供了docum
- java-64.寻找第N个丑数
bylijinnan
java
public class UglyNumber {
/**
* 64.查找第N个丑数
具体思路可参考 [url] http://zhedahht.blog.163.com/blog/static/2541117420094245366965/[/url]
*
题目:我们把只包含因子
2、3和5的数称作丑数(Ugly Number)。例如6、8都是丑数,但14
- 二维数组(矩阵)对角线输出
bylijinnan
二维数组
/**
二维数组 对角线输出 两个方向
例如对于数组:
{ 1, 2, 3, 4 },
{ 5, 6, 7, 8 },
{ 9, 10, 11, 12 },
{ 13, 14, 15, 16 },
slash方向输出:
1
5 2
9 6 3
13 10 7 4
14 11 8
15 12
16
backslash输出:
4
3
- [JWFD开源工作流设计]工作流跳跃模式开发关键点(今日更新)
comsci
工作流
既然是做开源软件的,我们的宗旨就是给大家分享设计和代码,那么现在我就用很简单扼要的语言来透露这个跳跃模式的设计原理
大家如果用过JWFD的ARC-自动运行控制器,或者看过代码,应该知道在ARC算法模块中有一个函数叫做SAN(),这个函数就是ARC的核心控制器,要实现跳跃模式,在SAN函数中一定要对LN链表数据结构进行操作,首先写一段代码,把
- redis常见使用
cuityang
redis常见使用
redis 通常被认为是一个数据结构服务器,主要是因为其有着丰富的数据结构 strings、map、 list、sets、 sorted sets
引入jar包 jedis-2.1.0.jar (本文下方提供下载)
package redistest;
import redis.clients.jedis.Jedis;
public class Listtest
- 配置多个redis
dalan_123
redis
配置多个redis客户端
<?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi=&quo
- attrib命令
dcj3sjt126com
attr
attrib指令用于修改文件的属性.文件的常见属性有:只读.存档.隐藏和系统.
只读属性是指文件只可以做读的操作.不能对文件进行写的操作.就是文件的写保护.
存档属性是用来标记文件改动的.即在上一次备份后文件有所改动.一些备份软件在备份的时候会只去备份带有存档属性的文件.
- Yii使用公共函数
dcj3sjt126com
yii
在网站项目中,没必要把公用的函数写成一个工具类,有时候面向过程其实更方便。 在入口文件index.php里添加 require_once('protected/function.php'); 即可对其引用,成为公用的函数集合。 function.php如下:
<?php /** * This is the shortcut to D
- linux 系统资源的查看(free、uname、uptime、netstat)
eksliang
netstatlinux unamelinux uptimelinux free
linux 系统资源的查看
转载请出自出处:http://eksliang.iteye.com/blog/2167081
http://eksliang.iteye.com 一、free查看内存的使用情况
语法如下:
free [-b][-k][-m][-g] [-t]
参数含义
-b:直接输入free时,显示的单位是kb我们可以使用b(bytes),m
- JAVA的位操作符
greemranqq
位运算JAVA位移<<>>>
最近几种进制,加上各种位操作符,发现都比较模糊,不能完全掌握,这里就再熟悉熟悉。
1.按位操作符 :
按位操作符是用来操作基本数据类型中的单个bit,即二进制位,会对两个参数执行布尔代数运算,获得结果。
与(&)运算:
1&1 = 1, 1&0 = 0, 0&0 &
- Web前段学习网站
ihuning
Web
Web前段学习网站
菜鸟学习:http://www.w3cschool.cc/
JQuery中文网:http://www.jquerycn.cn/
内存溢出:http://outofmemory.cn/#csdn.blog
http://www.icoolxue.com/
http://www.jikexue
- 强强联合:FluxBB 作者加盟 Flarum
justjavac
r
原文:FluxBB Joins Forces With Flarum作者:Toby Zerner译文:强强联合:FluxBB 作者加盟 Flarum译者:justjavac
FluxBB 是一个快速、轻量级论坛软件,它的开发者是一名德国的 PHP 天才 Franz Liedke。FluxBB 的下一个版本(2.0)将被完全重写,并已经开发了一段时间。FluxBB 看起来非常有前途的,
- java统计在线人数(session存储信息的)
macroli
javaWeb
这篇日志是我写的第三次了 前两次都发布失败!郁闷极了!
由于在web开发中常常用到这一部分所以在此记录一下,呵呵,就到备忘录了!
我对于登录信息时使用session存储的,所以我这里是通过实现HttpSessionAttributeListener这个接口完成的。
1、实现接口类,在web.xml文件中配置监听类,从而可以使该类完成其工作。
public class Ses
- bootstrp carousel初体验 快速构建图片播放
qiaolevip
每天进步一点点学习永无止境bootstrap纵观千象
img{
border: 1px solid white;
box-shadow: 2px 2px 12px #333;
_width: expression(this.width > 600 ? "600px" : this.width + "px");
_height: expression(this.width &
- SparkSQL读取HBase数据,通过自定义外部数据源
superlxw1234
sparksparksqlsparksql读取hbasesparksql外部数据源
关键字:SparkSQL读取HBase、SparkSQL自定义外部数据源
前面文章介绍了SparSQL通过Hive操作HBase表。
SparkSQL从1.2开始支持自定义外部数据源(External DataSource),这样就可以通过API接口来实现自己的外部数据源。这里基于Spark1.4.0,简单介绍SparkSQL自定义外部数据源,访
- Spring Boot 1.3.0.M1发布
wiselyman
spring boot
Spring Boot 1.3.0.M1于6.12日发布,现在可以从Spring milestone repository下载。这个版本是基于Spring Framework 4.2.0.RC1,并在Spring Boot 1.2之上提供了大量的新特性improvements and new features。主要包含以下:
1.提供一个新的sprin