- 微调特定于域的搜索的文本嵌入:附Python代码详解
人工智能
微调特定于域的搜索的文本嵌入:附Python代码详解阅读时长:20分钟发布时间:2025-02-02近日热文:全网最全的神经网络数学原理(代码和公式)直观解释欢迎关注知乎和公众号的专栏内容LLM架构专栏知乎LLM专栏知乎【柏企】公众号【柏企科技说】【柏企阅文】嵌入模型将文本表示为具有语义意义的向量。尽管它们可以很容易地用于无数的用例(例如检索、分类),但通用嵌入模型在特定领域的任务上可能表现不佳。
- Scikit-Learn K均值聚类
对许
#Python#人工智能与机器学习scikit-learn聚类机器学习
Scikit-LearnK均值聚类1、K均值聚类1.1、K均值聚类及原理1.2、K均值聚类的优缺点1.3、聚类与分类的区别2、Scikit-LearnK均值聚类2.1、Scikit-LearnK均值聚类API2.2、K均值聚类初体验(寻找最佳K)2.3、K均值聚类案例1、K均值聚类K-均值(K-Means)是一种聚类算法,属于无监督学习。K-Means在机器学习知识结构中的位置如下:1.1、K均值
- 【15-聚类分析入门:使用Scikit-learn进行K-means聚类】
是阿牛啊
机器学习回归预测大数据挖掘kmeans聚类python机器学习人工智能sklearn性能优化
文章目录前言K-means聚类的原理Scikit-learn中的K-means实现安装与导入生成模拟数据应用K-means聚类可视化聚类结果选择K的值总结前言 聚类分析是一种无监督学习方法,用于将数据集中的样本分组成若干个簇(cluster)。K-means是最广泛使用的聚类算法之一,其核心思想是将数据点分配到K个簇中,使得每个点到其簇中心的距离之和最小。在本文中,我们将介绍如何使用Scikit
- 数据挖掘常用算法优缺点分析
天波烟客00
数据挖掘数据挖掘机器学习
领取机器学习视频教程:http://www.admin444.com/P-c8129a48常用的机器学习、数据挖掘方法有分类,回归,聚类,推荐,图像识别等。在实际应用中,一般都是采用启发式学习方式来实验。偏差&方差偏差:描述的是预测值(估计值)的期望与真实值之间的差距,偏差越大,越偏离真实数据。偏差bias其实是模型太简单而带来的估计不准确的部分---欠拟合方差:描述的是预测值的变化范围、离散程度
- Scikit-learn提供了哪些机器学习算法以及如何使用Scikit-learn进行模型训练和评估
Java资深爱好者
机器学习scikit-learn算法
Scikit-learn库的使用一、Scikit-learn提供的机器学习算法Scikit-learn(通常简称为sklearn)是一个广泛使用的Python机器学习库,它提供了多种用于数据挖掘和数据分析的算法。Scikit-learn支持的机器学习算法可以大致分为以下几类:分类算法:支持向量机(SVM)随机森林(RandomForest)逻辑回归(LogisticRegression)朴素贝叶斯
- 寒假刷题Day18
komo莫莫da
算法leetcode数据结构
一、16.最接近的三数之和这一题有负数,没有单调性,不能“大了右指针左移,小了左指针右移,最后存值域求差绝对值”。classSolution{public:intthreeSumClosest(vector&nums,inttarget){ranges::sort(nums);intans,n=nums.size();intmin_diff=INT_MAX;for(inti=0;i0&&x==nu
- 数据挖掘常用算法
kaiyuanheshang
AI数据挖掘算法人工智能
文章目录基于机器学习~~线性/逻辑回归~~树模型~~贝叶斯~~~~聚类~~集成算法神经网络~~支持向量机~~~~降维算法~~基于机器学习线性/逻辑回归类似单层神经网络y=k*x+b树模型优点可以做可视化分析速度快结果稳定依赖前期对业务和数据的理解贝叶斯贝叶斯依赖先验概率,先验知识越准,结果越好聚类集成算法xgboostlightbgm神经网络在文本、视觉领域效果非常好。但是过程黑盒,缺乏解释性支持
- 数据结构:时间复杂度和空间复杂度
星迹日
数据结构数据结构时间空间复杂度算法
我们知道代码和代码之间算法的不同,一定影响了代码的执行效率,那么我们该如何评判算法的好坏呢?这就涉及到了我们算法效率的分析了。一、算法效率所谓算法效率的分析分为两种:第一种时间效率,又称时间复杂度。第二种空间效率,又称空间复杂度。其中,时间复杂度主要衡量的是一个算法的运行速度,而空间复杂度主要衡量一个算法所需要的额外空间。二、时间复杂度1、概念算法的时间复杂度其实是一个数学函数,它描述了该算法的运
- 通过 Docker 部署 Mastodon 服务器 的教程
shelby_loo
docker服务器容器
如何使用Edu邮箱申请Azure订阅并开通免费的VPS想要免费获得Azure的VPS吗?拥有一个Edu邮箱就能让你轻松实现!Edu邮箱不仅可以帮助你申请Azure的学生订阅,还能免费使用Adobe和Notion等软件,让你的学习和工作更加便捷。如果你还没有Edu邮箱,可以参考末尾的衍生参考。在Azure100学生订阅中新建一台UbuntuVPS,并在Ubuntu下通过Docker部署Mastodo
- 在Windows上用Llama Factory微调Llama 3的基本操作
蛐蛐蛐
深度学习Python技巧科研工具llama
这篇博客参考了一些文章,例如:教程:利用LLaMA_Factory微调llama3:8b大模型_llama3模型微调保存-CSDN博客也可以参考LlamaFactory的Readme:GitHub-hiyouga/LLaMA-Factory:UnifyEfficientFine-Tuningof100+LLMsUnifyEfficientFine-Tuningof100+LLMs.Contribu
- 数据结构——时间复杂度
Lamar Carpenter
数据结构计算机408考研数据结构
前言当你拿到一段代码时,你该如何判断这一段代码算法的好坏程度?有的人会说跑一下(运行一下),事后统计运行时间。当然这样确实能够直观的通过看运行程序所花费时间,但是这存在着一些问题:和机器性能有关超级计算机vs单片机(同样的一段代码一定是超级计算机运行的时间更快)和编程语言有关越高级的语言运行的效率越低编译程序产生的机器指令质量有关有些算法不能事后统计导弹控制算法(不能为了统计算法的效率发射一颗导弹
- 【中科院1区】Matlab实现黏菌优化算法SMA-RF锂电池健康状态估计算法研究
matlab科研助手
matlab算法开发语言
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。个人主页:Matlab科研工作室个人信条:格物致知。更多Matlab完整代码及仿真定制内容点击智能优化算法神经网络预测雷达通信无线传感器电力系统信号处理图像处理路径规划元胞自动机无人机物理应用机器学习内容介绍摘要锂离子电池作为一种重要的储能器件,在电动汽车、便携式电子设备等领域发挥着至关重要的
- JCR一区级 | Matlab实现蜣螂算法DBO-Transformer-LSTM多变量回归预测
Matlab机器学习之心
算法matlabtransformer
✅作者简介:热爱数据处理、数学建模、仿真设计、论文复现、算法创新的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击主页:Matlab科研工作室个人信条:格物致知,期刊达人。内容介绍摘要:水质预测对于环境保护和资源管理至关重要。本文提出了一种基于蜣螂算法(DungBeetleOptimizer,DBO)、DBO-Transformer和LSTM的多变量水质回归预测模型,旨在提高水质参数
- 基于Lagrange-Newton法的SQP局部算法python实现
笛在月明
算法Pythonpython算法优化
序列二次规划(SQP)是解决约束优化问题中较好的一种算法,其流程为在实现算法的过程中,使用了scipy.optimize模块:scipy.optimize.minimize(fun,x0,args=(),method=None,jac=None,hess=None,hessp=None,bounds=None,constraints=(),tol=None,callback=None,option
- 全覆盖路径规划-精准细胞覆盖算法
码厂一粒沙
记录算法
今天,咱们来聊聊这个传统的精准细胞覆盖算法,算法的描述挺抽象的,这里尽量用易于理解的语言来讲解一下,它就像是给机器人安排一个任务,让它把一块地方仔仔细细地走一遍,下面详细说说它是怎么做的。整体思路想象你要打扫一个大房间,你得有个计划,知道先打扫哪块,再打扫哪块,最后把整个房间都打扫干净。精准细胞覆盖算法就是给机器人规划这样的“打扫路线”,让它能把给定的空间都走遍。具体步骤第一步:把空间“切块”并记
- 【文本去重】通俗易懂理解Minhash算法
凌漪_
算法数据结构大模型
Minhash算法直观理解作者:@凌漪_@板烧鱼仔@Yuxn.背景Jaccard相似度两个集合A和B,我们关心它们的Jaccard相似度J(A,B)=∣A∪B∣∣A∩B∣J(A,B)=\frac{∣A∪B∣}{∣A∩B∣}J(A,B)=∣A∩B∣∣A∪B∣Jaccard相似度描述了两个集合之间的相似程度。使用场景1:两个文档之间的相似度。注意:jaccard相似度并没有提取文档的任何语义,只是在查
- 28岁开始零基础学前端,这些血的教训你一定要避免
2501_90336583
前端
写了一个Vue动态表单组件,发布到NPM上。模仿Vue1.0版本写了一个MiniVue,这让我对Vue的理解达到了源码级别。写了几篇关于Vue的文章。计算机理论知识计算机理论知识决定了一个程序员的天花板(在国内还得加上英语)。数据结构与算法算法看了《剑指offer题解》、《Leetcode题解》这两本书,还是挺有用的,也有刷到的题面试正好碰上了的。编译原理、计算机原理由于编译原理和计算机原理是看的
- 电容上写着104是多大的电容,具体公式换算
LN花开富贵
电子电路单片机嵌入式硬件c语言电容
电容上面标记的“104”表示的是电容的容量为100000皮法拉德(pF),即100纳法拉德(nF)。电容器的标记通常采用三位数的编码来表示其容量和耐压等级,其中前两位数字表示有效数字,第三位表示后面跟随的零的数量。对于“104”这个标记:解析标记前两位数字:“10”表示的是有效数字10。在电容标记中,通常前两位是相连的,直接表示数值。第三位数字:“4”在这里表示的是在后面添加四个零。计算实际容量基
- leetcode 2856. 删除数对后的最小数组长度
萌の鱼
leetcode算法c++数据结构
题目如下数据范围示例我们假设存在一个出现频率最高的数a那么我们可以把这个数组分成三部分那么第一部分和第三部分必然可以消去一部分然后它们剩下的和a再消去当a的数量是数组的一半那么显然剩下的就是0当a的数量大于数组的一半那么显然存在无法消去的a剩2*count-n当a的数量小于数组的一半1.当n为偶数(可以画图因为a不足一半就意味着当数组分成两组时a不会相互重叠例如012234中2不重叠或者可以用第一
- java面试题(jvm)
lgcgkCQ
java面试题javajvm面试面试题
目录jvm组成1.jvm由哪些部分组成?2.什么是程序计数器3.什么是堆?4.什么虚拟机栈?5.栈和堆的区别?6.什么是方法区?7.什么是直接内存?类加载器1.什么是类加载器?2.有哪些类加载器?3.双亲委派模型4.类加载器的执行过程垃圾回收1.对象什么时候可以被垃圾器回收2.有哪些垃圾回收算法3.分代回收4.jvm有哪些垃圾回收器5.G1垃圾回收器6.强引用、软引用、弱引用、虚引用jvm实践1.
- Redis | 双端链表
瘦弱的皮卡丘
Redis链表redis数据结构redis链表
目录一、前言二、链表和链表节点的实现三、Redis的链表实现的特性一、前言链表在Redis中的应用非常广泛,比如列表键的底层实现之一就是链表。当一个列表键包含了数量比较多的元素,又或者列表中包含的元素都是比较长的字符串时,Redis就会使用链表作为列表键的底层实现。除了链表键之外,发布与订阅、慢査询、监视器等功能也用到了链表,Redis服务器本身还使用链表来保存多个客户端的状态信息,以及使用链表来
- yolo是什么,有什么优缺点以及YOLO的应用场景?
cesske
YOLO
目录前言一、yolo是什么?二、YOLO的优点三、YOLO的缺点四、YOLO的应用场景总结前言这里我们来讲一下yolo是什么,有什么优缺点?一、yolo是什么?“YOLO”在计算机视觉和深度学习领域是一个特定的算法框架,全称是“YouOnlyLookOnce”。这个算法最初由JosephRedmon、SantoshDivvala、RossGirshick和AliFarhadi在2015年提出,旨在
- 修改题注标签
pingfanren2
word
为了防止原博主删帖,故转到自己账号中,出处如下转载:(152条消息)修改题注标签_Z_shsf的博客-CSDN博客_seq图arabic怎么解决问题:论文中存在标签图1-和标签图,如何合并两种标签成为图并一起计数按Alt+F9查看域代码因为替换框内的识别内容有限,因此事先在空白处输入期望替换后的域代码如{SEQ图*ARABIC},注意{}是按ctrl+F9得到的域标识,空白处输好后ctrl+c复制
- 人机交互:面部识别_14.面部识别在虚拟现实和增强现实中的应用
zhubeibei168
机器人及导航人机交互vrar开发语言机器人导航与定位
14.面部识别在虚拟现实和增强现实中的应用14.1虚拟现实中的面部识别在虚拟现实(VR)环境中,面部识别技术可以显著提升用户体验,使其更加沉浸和自然。通过识别用户的面部表情,VR系统可以实时调整虚拟角色的行为,增强用户与虚拟世界的互动。14.1.1面部表情识别面部表情识别是虚拟现实中最常见的应用之一。通过摄像头捕捉用户的面部图像,使用计算机视觉算法识别出用户的表情,如微笑、惊讶、愤怒等,虚拟角色可
- Huffman编码的Python的实现
childish_tree
python算法霍夫曼树数据压缩
Huffman编码的Python的实现基本原理及步骤Huffman编码是一种贪心算法,用于无损数据压缩。它基于字符在数据中出现的频率来构建编码,频率高的字符使用较短的编码,而频率低的字符使用较长的编码。这种方式的目的是减少数据的大小,因为最常见的字符使用最短的编码,从而在整体上减少了所需的位数。实现Huffman编码的原理如下:频率统计:如果输入数据是一个字符串,代码会遍历这个字符串,统计每个字符
- 计数排序算法及优化(java)
爱吃土豆的程序员
数据结构与算法(JAVA)算法java计数排序
1.1引言计数排序是一种非比较排序算法,它适用于一定范围内的整数排序。计数排序的核心思想是通过统计每个元素出现的次数来确定它们的位置,而不是通过比较来决定元素的顺序。本文将详细介绍计数排序的历史背景、工作原理,并通过具体案例来阐述其应用。此外,还将探讨计数排序的不同优化方案,并给出相应的Java代码示例。1.2计数排序的历史计数排序的思想可以追溯到20世纪初,最早是由HaroldH.Seward在
- AI真的能理解我们这个现实物理世界吗?深度剖析原理、实证及未来走向
AI_DL_CODE
人工智能深度学习AIAI理解世界
摘要:当下,AI与深度学习广泛渗透生活各领域,大模型与海量数据加持下,其是否理解现实物理世界引发热议。文章开篇抛出疑问,随后深入介绍AI深度学习基础,包含神经网络架构、反向传播算法。继而列举AI在物理场景识别、实验数据分析中显露的“理解”迹象,也点明常识性错误、极端场景失效这类反例。从信息论、物理启发式算法剖析理论支撑,探讨融合物理知识路径,并延展至跨学科应用、评估维度、伦理社会问题,最终展望AI
- 攻克设备数据质量难题:深度学习应用的数据基石搭建教程(DBSCAN 聚类算法)
AI_DL_CODE
深度学习运维算法数据质量DBSCAN聚类算法
摘要:在深度学习赋能设备管理的浪潮中,数据质量成为关键瓶颈。本文聚焦设备数据采集与预处理阶段面临的噪声干扰、数据缺失等难题,深入讲解强化采集端管控的策略,详细剖析聚类、统计法及线性回归模型在数据清洗与补全中的应用原理,并结合振动传感器数据实例给出可实操的Python代码。旨在为从业者提供一站式解决方案,助力打造高质量设备数据集,为深度学习模型高效运行筑牢根基,推动设备管理智能化落地。文章目录攻克设
- pytorch实现循环神经网络
纠结哥_Shrek
pytorchrnn深度学习
人工智能例子汇总:AI常见的算法和例子-CSDN博客PyTorch提供三种主要的RNN变体:nn.RNN:最基本的循环神经网络,适用于短时依赖任务。nn.LSTM:长短时记忆网络,适用于长序列数据,能有效解决梯度消失问题。nn.GRU:门控循环单元,比LSTM计算更高效,适用于大部分任务。网络类型优势适用场景RNN计算简单,适用于短时序列语音、文本处理(短序列)LSTM适用于长序列,能记忆长期信息
- 普通算法——一维差分
ZZTC
算法算法
一维差分题目链接:https://www.acwing.com/problem/content/799/题目描述:输入一个长度为nnn的整数序列。接下来输入mmm个操作,每个操作包含三个整数l,r,c,l,r,c,l,r,c,表示将序列中[l,r][l,r][l,r]之间的每个数加上ccc。请你输出进行完所有操作后的序列。说明:差分是前缀和的逆运算,也就是构造一个bbb数组使aaa数组是bbb数组
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc