- Python 数据分析与可视化 Day 10 - 数据合并与连接
✅今日目标理解Pandas中数据合并的4种常用方式:concat、merge、join、combine掌握内连接、外连接、左连接、右连接等操作方式掌握按列对齐、按索引对齐的区别为后续数据整合、特征拼接等建模任务做准备一、concat合并(按行/列拼接)df1=pd.DataFrame({"姓名":["张三","李四"],"成绩":[85,90]})df2=pd.DataFrame({"姓名":["
- 左神算法之矩阵旋转90度
岳轩子
左神算法算法矩阵线性代数
目录旋转矩阵90度(原地操作)1.题目2.解释3.思路4.代码5.总结6.其他旋转矩阵90度(原地操作)1.题目旋转矩阵90度,且只能用有限的几个变量。比如下面的矩阵:12345678910111213141516转换结果为:139511410621511731612842.解释旋转矩阵90度是指将矩阵顺时针旋转90度。观察旋转前后的变化可以发现:原矩阵的第一行变为旋转后矩阵的最后一列原矩阵的第二
- 凌晨の3点,线程池竟在服务器里偷偷····
山海上的风
Java服务器java-ee线程池
凌晨の3点,线程池の竟在服务器里偷偷榨干CPU····⚡️CPU:JAVAKing为窝发声,HELPME⚡️JAVAKING今天将揭露线程池的罪恶行为⚡️《线程池:OH,YES》线程池到底对项目做了什么想象一下:每次点外卖都新雇一个厨师,吃完就开除——这就是裸奔线程的日常!在高并发三巨头(电商秒杀、金融交易、大数据处理)中:1️⃣CPU哭诉:90%时间在面试线程,10%干活(线程切换开销)2️⃣
- AI日报-20250627:谷歌Gemma 3n发布,百亿参数只需2G内存!荣耀启动IPO冲刺2000亿估值!
大数据AI-ZRL
AI日报人工智能业界资讯自然语言处理
1、黑马FLUX.1-Kontext开源!文本一键PS超越GPT-image-1,AI修图新标杆2、谷歌Gemma3n震撼发布:2G内存跑100亿参数多模态模型,端侧AI迎来革命!3、90后清华博士打造AI厨师!获数千万融资,拿下全国首张机器人食品经营证4、蚂蚁CGM代码图模型震撼开源:44%修复率登顶SWE-Bench,碾压所有开源模型5、快手Keye-VL大模型震撼开源!视频理解能力秒杀人类,
- AI算力综述和资料整理
木鱼时刻
人工智能
目录总体介绍计算精度传输协议GPU池化资源调度CUDA技术GPU硬件参考链接总体介绍AI算力是人工智能系统的核心基础设施,涵盖了从计算精度、传输协议到硬件架构的完整技术栈。计算精度混合精度训练原生满血版DeepSeek671B是FP8精度。FP16在训练计算力占比有80-90%,FP32占比10%-20%。大模型训练中通常会用到FP16(半精度浮点数),但并不是只使用FP16,而是采用**混合精度
- 如何保证软件质量?汽车软件基于模型开发的十个问题与质量工具推荐
MESMarketing
自动驾驶
如何保证软件质量?汽车软件基于模型开发的十个问题与质量工具推荐基于模型的软件开发(MBD)在20世纪90年代兴起,当时Simulink®和Matrix®等工具正在从学术或研究领域过渡到生产支持领域。MBD在1999年引入高效自动代码生成后,借助EmbeddedCoder®和TargetLink®等工具迅速扩展。随着电子电器系统日趋复杂,有别于传统的软件开发,基于模型的软件开发成为自动化行业贴别是汽
- 模型性能评估实战:解密大模型准确率与召回率的计算逻辑与业务权衡
在AI项目落地过程中,模型性能评估是关键一步。想必大家都听过这样的案例:某医疗AI项目中,一个在测试集上准确率达到98%的肺癌筛查模型,实际部署后却遗漏了20%的早期癌变患者。无独有偶,某银行风控系统中,一个标榜着99.5%“高准确率”的模型,实际使用中却放过了90%的信用卡欺诈行为。这些案例都给我们敲响了警钟,模型性能评估中存在不少被忽视的致命盲区,今天就让我们一同深入探寻这其中的奥秘。第一部分
- 合规型区块链RWA系统解决方案报告——机构资产数字化的终极武器
Ashlee_guweng22346
区块链需求分析架构pythoneclipsec#git
(跨境金融科技解决方案白皮书)一、直击机构客户四大痛点痛点传统方案缺陷我们的破局点✖️跨境资产流动性差结算周期30+天,摩擦成本超8%▶️7×24h全球实时交易(速度提升90%)✖️合规成本飙升KYC/AML人工审核占成本35%+▶️自动化合规引擎(成本降低50%)✖️资产透明度缺失多层中介导致权属不清▶️链上全生命周期溯源(100%防篡改)✖️新型资产配置难非标资产难分割、难定价▶️碎片化代币发
- 如何用Python统计字符串(引用ASCII码)【两种方法】
*濒危物种*
python前端linux
要求实现:根据输入的字符串,统计其中大写字母、小写字母、数字、字符各有多少个【重要步骤提示】0-9的ASCII数字的ASCII码值取值范围为48-57;a-z小写英文字母的取值范围为97-122;A-Z大写英文字母的取值范围为65-90;Len()、append()方法的使用ord()函数获取字符对应的ASCII码值方法一#引到用户输入字符list1=list(input('请输入一行字符:'))
- SQLSERVER 中GO的作用详解
为了省事,直接贴过来的。请看下文详解。usedb_CSharpgoselect*,备注=casewhenGrade>=90then'成绩优秀'whenGrade=80then'成绩良好'whenGrade=70then'成绩及格'else'不及格'endfromtb_Grade如果只是执行一条语句,有没有GO都一样如果多条语句之间用GO分隔开就不一样了每个被GO分隔的语句都是一个单独的事务,一个语
- 【.net core】【watercloud】【layui】弹出层回调方法定位当前弹出层位置并调用弹出窗口内部方法
MoFe1
.netcorelayui前端
common.modalOpen({title:"数据生成",url:"your/url/path",width:"95%",height:"90%",yes:function(index,layero){//定位到顶层窗口查找,如果仅使用window,为从当前页面窗口查找,会查找不到信息variframeWin=top.window[layero.find('iframe')[0]['name'
- 为什么90%企业的AI数据分析都失败了?奥威BI给出破局方案
qq_43696218
人工智能数据分析数据挖掘
一、引言:AI数据分析在数字化转型中的核心地位在当今企业全面数字化转型的背景下,AI数据分析已成为解锁业务增长潜力的关键钥匙。然而,市场上众多AI数据分析产品常陷入“伪需求场景”,看似前沿却难以真正落地。本文将深入探讨奥威BI如何通过其AI数据分析能力,突破伪需求,实现数据价值的最大化。二、AI数据分析:伪需求场景的挑战伪需求场景的定义与表现AI数据分析领域的伪需求场景,指的是那些表面创新实则难
- 微信小程序进度条progress支持渐变色
微信小程序自带进度条progress支持渐变色代码.wx-progress-inner-bar{border-radius:8rpx!important;background:linear-gradient(90deg,#FFD26E8%,#ED0700100%)!important;}图上支持选中比例设置样式具体颜色如图
- 【Linux命令大全】Linux虚拟化技术终极指南:从KVM到容器的深度解析
全息架构师
Linux前沿技术与应用linux运维服务器
【Linux命令大全】Linux虚拟化技术终极指南:从KVM到容器的深度解析行业洞察:全球90%的云服务基于Linux虚拟化技术!掌握这些技能可提升500%的资源利用率!本文包含180+配置案例,40张架构图,企业级虚拟化方案全公开!前言:为什么虚拟化是云计算的基础?在现代数据中心中,我们面临的核心虚拟化挑战:硬件资源的高效分割近原生性能的追求安全隔离的保障混合负载的调度跨平台的兼容性惊人数据:A
- 【数字IC前端笔试真题精刷(2022.7.28)】芯动——数字IC验证工程师(1号卷-验证)
ReRrain
#数字IC笔试
声明:本专栏所收集的数字IC笔试题目均来源于互联网,仅供学习交流使用。如有侵犯您的知识产权,请及时与博主联系,博主将会立即删除相关内容。笔试时间:2022-7-28;题目类型:不定项(10x1’=10’)【错选不得分,少选得1/3分】问答(9x10’=90’)文章目录不定项1、(单选)在verilog语言中,a=4'b1011,那么&a=()2、(单选)SystemVerilog中类默认的成员属性
- XEN和KVM云计算虚拟化技术
电脑天空
视频教程云计算kvmxen
一、XEN和KVM云计算虚拟化技术01_虚拟化技术基础原理详解02_Xen虚拟化及DomU的实现03_Xen基于iscsi共享实现实时迁移04_kvm虚拟化下载链接:链接:http://pan.baidu.com/s/1milQbNU密码:90ct二、xen虚拟化技术实战详解视频教程01-xen基本原理02-xen安装与使用详解03-xen基本原理及安装使用总结04-xen的使用详解05-xen的
- DIY语音控制车辆玩具全攻略:从硬件组装到功能实现
欧阳天羲
硬件工程语音识别自动驾驶
一、设备清单与成本估算1.1硬件组件列表组件名称价格(元)备注ArduinoUno兼容板7.04控制核心,支持多传感器接入DFRobot离线语音识别模块105支持10条自定义语音指令L298N电机驱动板5双路电机驱动,带散热片直流减速电机×2(JGB37-520)3012V供电,150转/分钟SG90微型舵机5控制前轮转向HC-SR04超声波传感器2.45测距范围2-400cm18650锂电池(3
- 打印效率助手办公文档批量打印器 手动打印耗时直降 90%企业级批量打印
阿富软件园
电脑windows开源软件
各位办公小能手们!你们有没有过被一堆文件打印折磨到怀疑人生的经历?一堆文档要打印,一个一个打开再打印,这得浪费多少时间和精力啊!不过别慌,今天就给大家介绍一款神器——办公文档批量打印器v4.0!软件下载地址安装包这东西简直就是打印界的超级英雄,专门解决多文件打印的难题。它的核心功能超厉害,不用手动打开文档,就能自动化批量打印,就像有个隐形小助手帮你干活一样!它支持PDF、XPS、TIF、EPUB、
- Olipop 通过在亚马逊上投放公关礼盒,仅花几美分就将粉丝变成KOL
marteker
大数据
Olipop改造德克萨斯州奥斯汀的奥斯汀汽车旅馆,打造三间套房,通过不同年代的视角来展示其各种口味的汽水,其中包括一间受90年代启发的全粉色套房。Olipop推出夏季营销活动,其中包括一个怀旧主题的旅行体验和面向普通消费者的网红风格公关礼盒。「时光旅行旅行社」活动将德克萨斯州奥斯汀的奥斯汀汽车旅馆改造成三间套房,通过不同年代的视角来展现Olipop的各种口味。消费者可以通过拨打官方热线参与抽奖,有
- [创业之路-441]:行业 - 互联网+移动互联网和大数据时代的100个预言:技术个性、商业变革、社会重构、文化娱乐、环境、教育、健康医疗、未来生活方式
文火冰糖的硅基工坊
创业之路大数据重构人工智能架构科技系统架构健康医疗
目录一、技术革新二、商业变革三、社会重构四、文化与娱乐六、环境与可持续发展七、教育与知识传播八、健康与医疗九、伦理与法律十、未来生活方式十一、终极预言结语在移动互联网和大数据时代,技术革新正以前所未有的速度重塑社会、经济与文化。以下是基于当前趋势和未来可能性的100个预言,涵盖技术、商业、社会、文化等多个维度:一、技术革新通信-5G与6G的普及:未来5年内,5G将覆盖全球90%的人口,6G技术开始
- 特斯拉及新能源车企笔试面试题型解析上-21期
启芯硬件笔记
经验分享PCBEMI硬件工程面试职场和发展
本专栏预计更新90期左右。当前第21期-特斯拉硬件.特斯拉作为全球领先的电动汽车、能源存储和人工智能公司,其硬件工程师岗位的招聘通常包括笔试和多轮技术面试,考察领域涵盖数字电路设计、模拟电路、嵌入式系统、电动车技术和自动驾驶等。由于特斯拉的创新性和技术领先地位,其面试问题可能更加注重实际应用和问题解决能力。笔试通常旨在考察候选人的基础理论知识、问题分析能力、电路设计与调试经验、以及对相关工具和方法
- 大厂硬件笔试题型和详细解析
启芯硬件笔记
经验分享
本专栏预计更新90期左右。当前第23期-大厂硬件综合.这个系列通过在国内外网上搜索大厂公开的笔试和面试题目,然后构造相关的知识点矩阵,让大家对核心的知识点有更深的认识,这个过程虽然耗时费力,但大厂的很多题目(包括模拟题)确实非常巧妙,很有代表性。由于官方没有发布过这样的题库,所以文章中的题目只能作为参考的范式,主要还是告诉读者解题的方法和考察的知识点。硬件工程师在面试过程中,需要展示出扎实的电路设
- 特斯拉及新能源车企笔试面试题型解析下
启芯硬件笔记
经验分享硬件工程嵌入式硬件技术提升面试职场和发展
特斯拉及新能源车企笔试面试题型解析下本专栏预计更新90期左右。当前第22期-特斯拉硬件.由于特斯拉的招聘信息保密,本文根据公开的特斯拉硬件工程师面试经验、招聘需求以及行业通用技术领域,并提供详细的题目解析思路和方法,以期为准备特斯拉硬件工程师职位的候选人提供有价值的参考、总结、和经验分享,结合特斯拉的电动汽车和自动驾驶技术特点,给出可能涉及的题目,并提供详细解析。随着技术的飞速发展和特斯拉业务的不
- LDPC纠错码:通过低密度奇偶校验码将逻辑量子比特的物理量子比特需求降低90%,仅需12个物理量子比特支撑1个逻辑量子比特,显著降低错误率
百态老人
量子计算
基于我搜索到的资料,LDPC(低密度奇偶校验)纠错码在量子计算中通过其独特的稀疏矩阵结构和高效解码算法,显著降低了逻辑量子比特所需的物理量子比特数量,同时提升错误容忍能力。以下从原理、应用机制、实验依据及影响机制四个维度展开分析:一、LDPC纠错码的核心原理与优势LDPC码是一种线性分组纠错码,其核心特征在于奇偶校验矩阵的稀疏性:稀疏矩阵结构校验矩阵$\mathbf{H}$中非零元素(即“1”)的
- 开源低代码平台测评:2025年Top 10工具对比
知识产权13937636601
计算机AI大模型
本文基于功能性、性能、社区生态与企业适配度四大维度,对2025年主流开源低代码平台进行系统性评测。通过对比Appsmith、ToolJet、Budibase等Top10工具,分析其在可视化开发、数据集成、多端交付等方面的技术差异。研究发现,头部平台已实现90%以上场景的无代码覆盖,并通过AI辅助生成与云原生架构显著提升开发效率。结论提出制造业、金融业等典型行业的选型建议,并预测未来低代码工具将深度
- 5招让Java服务‘不宕机’!监控与调优实战:从熔断到火焰图的魔法防御
墨瑾轩
Java乐园java开发语言
关注墨瑾轩,带你探索编程的奥秘!超萌技术攻略,轻松晋级编程高手技术宝库已备好,就等你来挖掘订阅墨瑾轩,智趣学习不孤单即刻启航,编程之旅更有趣你的Java服务,还在“裸奔”吗?“CPU飙升到100%像‘开挂’?”“用户投诉‘卡成PPT’却查不出原因?”——别慌!今天教你用Java监控与调优,让系统像“钢铁侠”一样坚如磐石,故障率暴跌90%,响应时间缩短50%!权威背书:监控调优=系统的“体检报告”“
- 当前纳米镀层领域对“光辉晶盾吧”提及的微纳分级结构耐久性存在两种学术观点:
光辉晶盾纳米易洁镀膜晶盾空净猫除甲醛
材料工程
当前纳米镀层领域对“光辉晶盾吧”提及的微纳分级结构耐久性存在两种学术观点:支持派认为化学键合晶体网络可延缓分子链滑移(DOI:10.1021/acsami.3c01128)质疑派指出高湿环境(RH>85%)下气垫态崩溃风险仍待解决2.技术路线对比表技术维度传统有机镀膜光辉晶盾吧技术路线结构特征均质高分子膜仿生微纳分级结构结合方式物理吸附化学键合晶体网络理论接触角90°-110°>110°(Cass
- 参数量 vs 计算量:模型轻量化的双面指标,90%的人没理清!
1.参数量(Parameters):模型的知识容量定义:参数量指的是模型在训练过程中需要学习和存储的权重(Weights)和偏置(Biases)的总数量。这些参数是模型从数据中学习到的“知识”的具体数值体现。本质:模型内部存储的状态量。它直接决定了模型文件的大小。计算方式:统计模型中所有可学习参数的数量。全连接层(FC/Dense):参数数量=输入维度*输出维度+输出维度(其中+输出维度是偏置项)
- Power BI学习顺序指南
专注VB编程开发20年
学习信息可视化
在PowerBI的学习旅程中,你是否曾感到迷茫,投入了大量时间却看不到效果?其实,90%的问题都出在学习顺序不对上!别担心,按照这份正确的学习路径,帮助你在1个月内系统提升效率和技能!1️⃣基础准备:首先安装PowerBIDesktop并熟悉基本功能。2️⃣数据准备:掌握数据清洗和PowerQuery编辑器的使用。3️⃣数据建模:学会创建关系模型和DAX基础公式。4️⃣数据可视化:设计图表和仪表盘
- 电脑小白速成:5分钟变高手
晨曦543210
计算机基础
第一步:先搞懂这5个最常用的东西开关机按钮(别笑!90%的人不会正确关机)正确操作:点开始菜单→电源→关机(别直接按电源键!)进阶知识:长按电源键5秒=强制关机(死机时才用)文件管理(你的电脑像垃圾堆?)马上做:1.桌面右键→新建文件夹→改名「我的文件」2.把桌面上所有文档拖进去懒人技巧:按Ctrl+Shift+N秒建文件夹浏览器(别再装360了!)装这两个就够了:Chrome(直接下)Edge(
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号