- 10.8 LangChain Output Parsers终极指南:从JSON解析到流式处理的规范化输出实践
少林码僧
AI大模型应用实战专栏langchainchatgptgpt人工智能
LangChainOutputParsers终极指南:从JSON解析到流式处理的规范化输出实践关键词:LangChainOutputParsers、结构化输出、JSON解析、数据校验、流式处理一、为什么需要规范化输出?大模型输出的“荒野西部”问题原始输出的三大痛点:格式不可控:模型可能返回纯文本、Markdown、JSON混合体结构不统一:相同语义的内容以不同形式呈现(如日期格式混乱)数据不可靠:
- 【unstructured】针对unstructured的pdf提取的hi_res策略不能够连接huggingface.co下载模型的问题而选择本地化模型推理部署的方法
phillihp
llmpython深度学习pdfllamalangchain
目录unstructuredpdfhi_res策略本地推理部署说明python3.9虚拟环境准备安装miniconda创建一个conda-env环境安装unstructured背景知识安装步骤安装detectron2背景知识安装detectron2及其依赖torch,torchvision和torchaudio部署模型背景知识hi_res策略三种模型本地推理部署layoutmodel(detect
- 【TIMM应用】timm加载模型create_model,使用本地预训练模型
pen-ai
深度学习python深度学习神经网络卷积神经网络
timm加载模型create_model使用本地预训练模型1.常规方式,从https://huggingface.co/上下载1-1.timm库中create_model函数的用法1.最简单的用法2.查看可以直接创建的预训练模型列表3.参数:pretrained=True2.使用本地的预训练模型2-1.国内镜像下载模型:https://hf-mirror.com/2-2.查找对应模型名称2-3.调
- AI模型升级版0.02
pps-key
pythonAI写作学习gpt
根据您的需求,我将提供一个升级版的AI对话模型的实现代码,该模型可以在Windows上运行,并支持训练和微调。我们将使用HuggingFace的transformers库和torch库来实现这个目标。同时,我会结合最新的技术趋势,例如强化微调(ReinforcementFine-Tuning),来提升模型的性能。步骤1:安装必要的库首先,确保您的Windows系统上安装了Python(推荐Pyth
- 多语言教学材料生成:技术实现与业务价值分析
二进制独立开发
非纯粹GenAIGenAI与Python数据挖掘人工智能自然语言处理神经网络python语言模型学习方法
文章目录引言技术背景与需求分析多语言教学材料的业务需求技术挑战技术实现:LangChain与Writer模型的结合LangChain框架简介Writer模型的多语言生成能力实现多语言教学材料生成的代码示例多语言语音生成技术的应用多语言语音生成的需求CosyVoice模型的多语言语音生成能力实现多语言语音生成的代码示例业务价值分析降低多语言内容生成成本提高内容的一致性与质量增强用户体验与可访问性技术
- 使用 ChatPremAI 和 LangChain 构建高级聊天模型功能
hgSdaegva
python
##使用ChatPremAI和LangChain构建高级聊天模型功能###技术背景介绍随着生成式AI的快速发展,诸如ChatGPT等大型语言模型逐渐成为开发智能应用的核心组件。然而,如何高效利用这些模型,并将其部署到生产环境中,仍然是开发者面临的一大挑战。ChatPremAI是一款整合所有核心功能的生成式AI平台,通过与LangChain的完美结合,为开发者提供了灵活且功能强大的接口以实现复杂功能
- DeepSeek R1 Ollama本地化部署全攻略:三步实现企业级私有化大模型部署
Coderabo
DeepSeekR1Ollama
前言Ollama作为当前最受欢迎的本地大模型运行框架,为DeepSeekR1的私有化部署提供了便捷高效的解决方案。本文将深入讲解如何将HuggingFace格式的DeepSeekR1模型转换为Ollama支持的GGUF格式,并实现企业级的高可用部署方案。文章包含完整的量化配置、API服务集成和性能优化技巧。—一、基础环境搭建1.1系统环境要求操作系统:Ubuntu22.04LTS或CentOS8+
- 深入探索Llama.cpp:在LangChain中使用llama-cpp-python
dfvcbipanjr
pythonllamalangchain
深入探索Llama.cpp:在LangChain中使用llama-cpp-python随着大语言模型(LLMs)的普及,开发者需要更有效的方法来部署和使用这些模型。本文将介绍如何使用Llama.cpp的Python绑定——llama-cpp-python,并展示如何在LangChain中实现此功能。1.引言llama-cpp-python是Llama.cpp的Python绑定,使开发者能够在本地运
- (25-4-01)基于本地知识库的自动问答系统(LangChain+ChatGLM+ModelScope/Huggingface部署): 构建和部署对话系统(1)
码农三叔
《NLP算法实战》训练RAG多模态)langchainpython自然语言处理语言模型bert文心一言Huggingface
13.3.4构建和部署对话系统文件jina_serving.py定义了一个名为KnowledgeBasedChatLLM的类,用于初始化模型配置、加载文件、检索问题答案等操作。其中,LangChain是文件jina_serving.py中的一个重要组件,它通过将自然语言处理技术与信息检索技术相结合,实现了以下功能:模型管理与加载:通过init_model和reinit_model函数,实现了模型的
- 玩转大语言模型——使用GraphRAG+Ollama本地构建知识图谱(完全本地化,不依赖OpenAI)
艾醒(AiXing-w)
玩转大语言模型语言模型知识图谱人工智能
系列文章目录玩转大语言模型——使用langchain和Ollama本地部署大语言模型玩转大语言模型——ollama导入huggingface下载的模型玩转大语言模型——langchain调用ollama视觉多模态语言模型玩转大语言模型——使用GraphRAG+Ollama构建知识图谱玩转大语言模型——完美解决GraphRAG构建的知识图谱全为英文的问题玩转大语言模型——配置图数据库Neo4j(含a
- 5 个开源且免费的提示词管理系统,按照 从优到劣 排序
张3蜂
技术选型软件安装部署开源AI编程python
1.PromptSource研发背景:国家:国际协作(主要由美国和欧洲团队主导)。团队:BigScienceWorkshop,一个由HuggingFace和多个研究机构共同支持的开源社区。简介:专注于创建、管理和共享提示词模板。特点:提供Web界面,方便管理提示词。支持提示词的增、删、改、查。提示词修改历史可通过Git版本控制查看。开源地址:PromptSource推荐理由:功能全面,适合团队协作
- 自定义 LLM:LangChain与文心一言擦出火花
AI领航者
langchain文心一言机器学习人工智能chatgpt
自定义LLM自定义LLM需要实现以下必要的函数:_call:它需要接受一个字符串、可选的停用词,并返回一个字符串。它还可以实现第二个可选的函数:_identifying_params:用于帮助打印LLM信息。该函数应该返回一个字典。使用LLM模块来封装我们的模型接口,可以带来许多好处,其中之一就是有利于与LangChain的其他模块进行协同工作。下面我们通过LangChain自定义LLM实现文心一
- 在亚马逊云科技上通过LangChain ReAct Agent开发金融多模态数据AI分析中台
佛州小李哥
AWS技术科技langchain人工智能云计算亚马逊云科技aws数据分析
项目简介:小李哥将继续每天介绍一个基于亚马逊云科技AWS云计算平台的全球前沿AI技术解决方案,帮助大家快速了解国际上最热门的云计算平台亚马逊云科技AWSAI最佳实践,并应用到自己的日常工作里。本次介绍的是如何在亚马逊云科技机器学习托管服务AmazonSageMaker上搭建一个多模态LangChainAgent,通过ReAct逻辑让Agent通过AmazonBedrockAI模型托管服务上的大模型
- LLM应用架构实战:基于LangChain的企业级最佳实践
LLM教程
langchain大模型人工智能本地化部署Agent程序员LLM
前言随着ChatGPT等大语言模型的广泛应用,越来越多的企业开始将LLM整合到其业务系统中。然而,从概念验证(PoC)到生产环境的转换过程中,往往会遇到诸多技术挑战。本文将基于实际项目经验,分享LLM应用开发中的架构设计、性能优化、成本控制等关键环节和解决方案。1.LLM应用的特殊性在开始具体的架构设计之前,我们需要深入理解LLM应用区别于传统应用的几个关键特性。这些特性将直接影响我们的架构设计决
- DeepSeek 系列之 构建我自己的 DeepSeek Janus Pro Web 界面:使用 Gradio 进行本地实验
知识大胖
NVIDIAGPU和大语言模型开发教程deepseekjanuspro
介绍在探索了DeepSeek-R1并使用Ollama在本地运行模型后,我忍不住深入研究了DeepSeekJanusPro。但这次,我想更进一步:创建自己的Web界面来与模型交互,就像HuggingFace上的一样。剧透警告:它并不完美(是的,它很慢),但它有效——而且我在这个过程中学到了很多东西!推荐文章《如何在本地电脑上安装和使用DeepSeekR-1》权重1,DeepSeek《Nvidia系列
- Ubuntu上如何优雅下载huggingface上某个gguf模型文件
晨欣
ubuntulinux运维
OS:Ubuntu22.04LTS需求:下载GorillaOpenfunctionsV2Q2GGUF模型到本地https://huggingface.co/gorilla-llm/gorilla-openfunctions-v2-gguf/blob/main/gorilla-openfunctions-v2-q2_K.gguf方法:使用wget命令wgethttps://huggingface.c
- ollama把huggingface下载下来的模型转换为gguf
abments
人工智能语言模型
说明ollama导入从huggingface下载下来的模型在ollama的说明文档中有详细的介绍,大家可以按照文档说明进行操作。importing-pytorch–safetensors。既然官方已经给出了明确的操作步骤,那么我写这篇博客的意义又是什么呢?主要有两个目的:1.我的操作可能更适合中国宝宝体质2.方便后期自己查看要求建议使用conda管理python环境建议使用linux或mac环境,
- 开源大模型(LLM)下载
baidu_20834545
语言模型
由于huggingface等国外网址无法访问或限制等问题,下载不了或下载速度慢。可以尝试从modespace(魔搭社区)下载。1、找到对应的模型文件,比如Meta-Llama-3-8B,然后找到下载入口2、点击模型下载,有2种下载方式,这里我们通过git下载(注意由于模型文件一般都比较大,直接使用gitclone下载时会有问题,超大文件下载后数据会缺失。可通过gitlfsclone命令)3、打开l
- 【LangChain编程:从入门到实践】数据库问答场景
AI天才研究院
计算AI大模型企业级应用开发实战大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
【LangChain编程:从入门到实践】数据库问答场景作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来在现代信息社会中,数据的爆炸性增长使得如何高效地从海量数据中提取有用信息成为一个重要课题。数据库问答系统(DatabaseQuestionAnsweringSystem,DBQA)作为一种能够直接从数据库中获取答案的技术,
- OpenAI 函数调用 功能入门
AI火箭
chatgptopenai
Javascript版Langchain入门作者:AI小火箭的HB我是AI小火箭的HB,我探索和写作人工智能和语言交叉点的所有事物,范围从LLM,聊天机器人,语音机器人,开发框架,以数据为中心的潜在空间等。介绍LangChain是一个开源Python库,用于构建由大型语言模型(LLM)支持的应用程序。它提供了一个框架,将LLM与其他数据源(如互联网或个人文件)连接起来,允许开发人员将多个命令链接在
- 如何获取 DeepSeek 多模态大模型 Janus-Pro-7B
Channing Lewis
AI#AGI#NLPdeepseek
DeepSeek团队近期开源了新一代多模态模型Janus-Pro-7B,该模型在图像生成和多模态理解方面表现卓越,超越了OpenAI的DALL-E3,并在基准测试中取得了优异成绩。Janus-Pro-7B的代码和模型参数已经分别在github和huggingface上开源,我们拉取到本地后就能运行使用了。以下是如何获取Janus-Pro-7B模型的详细指南:步骤一:克隆代码库gitclonehtt
- 初学者指南:借助 LangChain 构建 LLM 驱动的应用程序!
初学者指南:借助LangChain构建LLM驱动的应用程序!原文链接:ABeginner’sGuidetoBuildingLLM-PoweredApplicationswithLangChain!作者:PavanBelagatti译者:倔强青铜三前言大家好,我是倔强青铜三。作为一名对技术充满热情的软件工程师,我热衷于分享和传播IT技术,致力于通过我的知识和技能推动技术交流与创新。欢迎关注我,微信公
- 9.1 LangChain深度解析:大模型应用开发的“万能胶水”与核心架构设计
少林码僧
AI大模型应用实战专栏langchaingpt人工智能chatgpt
LangChain深度解析:大模型应用开发的“万能胶水”与核心架构设计关键词:LangChain教程、大模型应用开发、AI开发框架、LangChain核心模块、智能体开发一、LangChain是什么?重新定义大模型应用开发范式LangChain是一个专为大语言模型(LLM)应用开发设计的开源框架,由HarrisonChase于2022年创建。它被开发者社区称为“AI应用开发的乐高积木”——通过标准
- Llama.cpp与Python的完美结合:快速入门指南
nseejrukjhad
llamapython开发语言
Llama.cpp与Python的完美结合:快速入门指南引言在现代AI的浪潮中,Llama.cpp提供了一种便捷的方法,将大型语言模型(LLM)集成到您的项目中。本文将介绍如何在Python中使用llama-cpp-python,并结合LangChain框架进行推理操作。通过本指南,您将逐步掌握如何安装、配置和使用Llama模型。主要内容Llama模型转换首先,新版本llama-cpp-pytho
- **Unlock the Potential of LangChain: Using Custom Functions as Runnables**
dsndnwfk
langchain前端python
引言LangChain为开发者提供了强大的工具链来构建复杂的AI应用。在这篇文章中,我们将深入探讨如何将自定义函数作为LangChain中的Runnables使用。这对于需要特定功能的开发场景,或是数据格式化需求尤为重要。本文将引导您通过使用RunnableLambda构造器和方便的@chain装饰器来实现这一目标。主要内容1.使用RunnableLambda构造器创建Runnable在LangC
- 创建自定义示例选择器以优化语言翻译模型
dsndnwfk
easyui前端javascriptpython
引言在构建自然语言处理模型时,一个常见的挑战是如何从大量示例中选择合适的子集来提高模型的性能和响应速度。本文将介绍如何使用自定义的示例选择器来优化语言翻译模型,特别是将英语翻译成意大利语的任务。我们将展示如何实现和使用一个基于输入长度差异选择示例的Selector。主要内容示例选择器接口在LangChain中,示例选择器负责编排用于提示的示例列表。所有选择器都基于BaseExampleSelect
- [如何在LangChain中实现安全集成:最佳实践与应对策略]
dsndnwfk
langchain安全数据库python
如何在LangChain中实现安全集成:最佳实践与应对策略在现代应用开发过程中,安全集成是一个非常重要的环节。LangChain作为一个拥有广泛生态系统的库,支持与各种外部资源进行集成,如本地和远程文件系统、API和数据库。这些集成使开发人员能够创建结合LLM(大语言模型)强大功能和外部资源交互的多样化应用。然而,安全问题不容忽视。本文将深入探讨在LangChain应用中实现安全集成的最佳实践,并
- LangGraph系列-1:用LangGraph构建简单聊天机器人
梦想画家
机器学习LangGraphLangChain
在快速发展的人工智能和大型语言模型(llm)世界中,开发人员不断寻求创建更灵活、更强大、更直观的人工智能代理的方法。虽然LangChain已经改变了这个领域的游戏规则,允许创建复杂的链和代理,但对代理运行时的更复杂控制的需求也在不断增长。LangGraph是建立在LangChain之上的重要模块,它将彻底改变我们设计和实施人工智能工作流的方式。在这篇博客中,我们提供了一个关于构建聊天机器人和彻底改
- 5 个遥遥领先的大模型 RAG 工具
机器学习社区
大模型大模型算法人工智能RAG多模态大模型语言模型
想象一下拥有一种超能力,让你能够对任何问题或提示生成类似人类的回答,同时还能够利用庞大的外部知识库确保准确性和相关性。这不是科幻小说,这就是检索增强生成(RAG)的力量。在本文中,我们将介绍五大遥遥领先的RAG工具或库:LangChain、LlamaIndex、Haystack、RAGatouille和EmbedChain。LangChainLangChain是一个全面的开源框架,用于开发大型语言
- 轻松实现 vLLM Chat:用 LangChain 替代 OpenAI API
ahdfwcevnhrtds
langchainpython
引言在现代应用中,使用语言模型进行自动化对话生成已经成为一个重要趋势。vLLM作为开源的语言模型实现,可以部署成一个模拟OpenAIAPI协议的服务器,方便成为应用中的替代方案。本篇文章将介绍如何使用LangChain的langchain-openai包来轻松实现vLLMChat。主要内容vLLM概述vLLM可以作为一个服务部署,模拟OpenAIAPI协议,从而成为OpenAIAPI的替代方案。通
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc