这里是针对内封了硬字幕的视频,字幕已经成为了画面的一部分。
思路:简单用 opencv 提取视频内的所有帧,然后用 tesseract 对图片进行 ocr 识别。
目前的效率较低、准确度也一般,凑合用。
0. 首先需要配置一下
0.1 安装 python 库
- python-opencv
- pytesseract
- scikit-image
0.2 安装 tesseract 软件,下载训练好的语言包
- tesseract 软件可以用 scoop 安装:
scoop install tesseract
- tesseract 训练好的语言包
帮助文档: https://tesseract-ocr.github.io/tessdoc/
官方体提供了三种训练好的模型:
- tessdata
- tessdata_best
- tessdata_fast
我们这里选择 tessdata_fast
:
- 中文: https://raw.githubusercontent.com/tesseract-ocr/tessdata-fast/master/{}.traineddata
- 英文: https://raw.githubusercontent.com/tesseract-ocr/tessdata-dast/master/{}.traineddata
- 中括号里是语言的名字:如
chi_sim
、eng
等。
可以用python下载:
import os
from urllib.request import urlretrieve
def download_tessdata(url, savepath='./'):
# 显示下载进度
def reporthook(a, b, c):
print("\rdownloading: %5.1f%%" % (a * b * 100.0 / c), end="")
filename = os.path.basename(url)
if not os.path.isfile(os.path.join(savepath, filename)):
print('Downloading data from %s' % url)
urlretrieve(url, os.path.join(savepath, filename), reporthook=reporthook)
print('\nDownload finished!')
else:
print('File already exsits!')
filesize = os.path.getsize(os.path.join(savepath, filename)) # 获取文件大小
print('File size = %.2f Mb' % (filesize / 1024 / 1024)) # Bytes转换为Mb
tessdata_dir = './tessdata/'
tessdata_url = 'https://ghproxy.com/https://raw.githubusercontent.com/tesseract-ocr/tessdata/master/{}.traineddata'
# 语言: 中+英
lang = 'chi_sim+eng'
for lang_name in lang.split('+'):
download_tessdata(tessdata_url.format(lang_name), tessdata_dir)
1. 读取视频
使用 opencv 读取视频
import cv2
video_path = 'd7.mp4'
v = cv2.VideoCapture(video_path)
num_frames = int(v.get(cv2.CAP_PROP_FRAME_COUNT))
fps = v.get(cv2.CAP_PROP_FPS)
height = int(v.get(cv2.CAP_PROP_FRAME_HEIGHT))
width = int(v.get(cv2.CAP_PROP_FRAME_WIDTH))
print(f'video : {video_path}\n'
f'num_frames : {num_frames}\n'
f'fps : {fps}\n'
f'resolution : {width} x {height}')
2. 提取所有帧
import datetime
def get_frame_index(time_str: str, fps: float):
t = time_str.split(':')
t = list(map(float, t))
if len(t) == 3:
td = datetime.timedelta(hours=t[0], minutes=t[1], seconds=t[2])
elif len(t) == 2:
td = datetime.timedelta(minutes=t[0], seconds=t[1])
else:
raise ValueError(
'Time data "{}" does not match format "%H:%M:%S"'.format(time_str))
index = int(td.total_seconds() * fps)
return index
# 起始时间、结束时间
time_start = '0:00'
time_end = '0:10'
ocr_start = get_frame_index(time_start, fps) if time_start else 0
ocr_end = get_frame_index(time_end, fps) if time_end else num_frames
num_ocr_frames = ocr_end - ocr_start
print(f'ocr_start : {ocr_start}\n'
f'ocr_end : {ocr_end}\n'
f'num_ocr_frames : {num_ocr_frames}')
3. 只保留画面中有字幕的区域
# *** 调整字幕区域的高度,按比例 ***
h1, h2 = 0.86, 0.94
h1, h2 = int(height * h1), int(height * h2)
v.set(cv2.CAP_PROP_POS_FRAMES, ocr_start)
frames = [v.read()[1] for _ in range(num_ocr_frames)]
z_frames = [frame[h1:h2, :] for frame in frames]
# 预览一下
title = 'preview'
cv2.startWindowThread()
cv2.namedWindow(title)
for idx, img in enumerate(z_frames):
tmp_img = img.copy()
cv2.putText(tmp_img, f'idx:{idx}', (5, 25),
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 255), 2)
cv2.imshow(title, tmp_img)
cv2.imshow(title, img)
cv2.waitKey(50)
cv2.destroyWindow(title)
cv2.destroyAllWindows()
4. 去除相似度较高的帧,保留关键帧
为了减少识别量,先去除一部分相似度较高的图片。
- 计算两个图片的均方差(即 MSE), 采用 skimage.metrics.mean_squared_error 函数
# 设置阈值
mse_threshold = 100
from skimage.metrics import mean_squared_error
k_frames = [{'start': 0,
'end': 0,
'frame': z_frames[0],
'text': ''}]
for idx in range(1, num_ocr_frames):
img1 = z_frames[idx - 1]
img2 = z_frames[idx]
mse = mean_squared_error(img1, img2)
# print(idx, mse)
if mse < mse_threshold:
k_frames[-1]['end'] = idx
else:
k_frames.append({'start': idx,
'end': idx,
'frame': z_frames[idx],
'text': ''})
for kf in k_frames:
print(f"{kf['start']} --> {kf['end']} : {kf['text']}")
5. 识别字幕
import pytesseract
config = f'--tessdata-dir "{tessdata_dir}" --psm 7'
for idx, kf in enumerate(k_frames):
# 识别为字符串
ocr_str = pytesseract.image_to_string(kf['frame'], lang=lang, config=config)
ocr_str = ocr_str.strip().replace(' ', '')
if ocr_str:
k_frames[idx]['text'] = ocr_str
print(f"{kf['start']} --> {kf['end']} : {kf['text']}")
print([k_frames.remove(kf) for kf in k_frames if not kf['text']])
6. 格式化字幕
for kf in k_frames:
print(f"{kf['start']} --> {kf['end']} : {kf['text']}")
def get_srt_timestamp(frame_index: int, fps: float):
td = datetime.timedelta(seconds=frame_index / fps)
ms = td.microseconds // 1000
m, s = divmod(td.seconds, 60)
h, m = divmod(m, 60)
return '{:02d}:{:02d}:{:02d},{:03d}'.format(h, m, s, ms)
for kf in k_frames:
time1 = get_srt_timestamp(kf['start'], fps)
time2 = get_srt_timestamp(kf['end'], fps)
print(f"{time1} --> {time2}\n{kf['text']}\n")
完整代码:
ref: https://github.com/shenbo/video-subtitles-ocr