- 你的Go应用真的用了正确的 CPU 核数吗?
go
Go的调度模型是GMP,其中G是goroutine,M是线程,P是可用的CPU核数。多个G会共用一个M。M作为操作系统层面上的调度单位,在执行时需要绑定到P。如果操作系统认为的某个Go进程可用的CPU数,和该进程认为的可用的CPU数不一致,那么即使把M绑定到某个P上,操作系统也不一定会执行这个线程。所以能否获取准确的可用CPU核数会影响Go的调度效率。当用户在k8s中设置了资源限制:spec:co
- 使用 Goroutines 和 Channels 实现高效并发编程
Go是一门以并发为核心设计的编程语言,其Goroutines和Channels提供了轻量级且高效的并发模型。在现代软件开发中,性能和并发是两个至关重要的因素,而Go的设计让开发者能够以一种简单、直观的方式实现高效的并发程序。本文将深入探讨Goroutines和Channels的核心原理,分析它们的实际使用场景,并通过代码示例展示如何利用它们构建高效的并发应用程序。Goroutines:轻量级的并发
- Linux驱动设备--IIO驱动
玮玮豆豆
linuxlinuxc语言ubuntu
一、简介加速度计、陀螺仪、电流/电压测量芯片、光传感器、压力传感器等都属于IIO系列设备IIO模型基于设备和通道架构:设备代表芯片本身,它位于整个层次结构的顶层通道表示设备的单个采集线,设备可能有一个或多个通道。例如,加速度计是具有3个通道的设备,每个轴(X、Y和Z)都有一个通道。用户空间与IIO驱动程序进行交互的两种方式:/sys/bus/iio/iio:deviceX:代表传感器及其通道/de
- python 语音识别
柚梓sir
神经网络语音识别人工智能
在python中训练一个语音识别系统主要需要以下几个步骤:-语料库准备-数据预处理-特征提取-训练模型第一部分:语料库的准备什么是语料库?语料库长什么样?语料库由两部分组成,第一部分是语音,第二部分是玉莹的标注,通常为字符形式。本次项目中,我们选用的语料库是THCHS-30,这个语料库是在安静的办公室环境下,由录音人员用普通话朗读新闻的语音作为数据,总时长超过30个小时。我们利用语料库,构造转换字
- linux IIO驱动框架
内核老工人
linux网络运维
工业IO(IndustrialI/O)是专用于ADC和DAC的内核子系统,加速度计、陀螺仪、电流电压测量芯片、光传感器、压力传感器等都属于IIO系列设备。IIO模型采用设备和通道架构。其中设备属于芯片本身,通道则表示设备的单个采集线,设备可能有若干个通道。例如加速度计就有3个通道,每个轴(X、Y和Z)都有一个通道。IIO设备和用户空间交互有两种方式:/sys/bus/iio/iio:deviceX
- Classifier Guidance 与 Classifier-Free Guidance
Adenialzz
stablediffusion
ClassifierGuidance与Classifier-FreeGuidanceDDPM终于把diffusion模型做work了,但无条件的生成在现实中应用场景不多,我们终归还是要可控的图像生成。本文简要介绍两篇关于diffusion模型可控生成的工作。其中Classifier-FreeGuidance的方法还是现在多数条件生成diffusion模型的主流思路。ClassifierGuidan
- 【diffusers极速入门(六)】缓存梯度和自动放缩学习率以及代码详解
多恩Stone
AIGCDiffusion编程学习diffuserspytorchAIDeeplearningAIGCpython
系列文章目录【diffusers极速入门(一)】pipeline实际调用的是什么?call方法!【diffusers极速入门(二)】如何得到扩散去噪的中间结果?Pipelinecallbacks管道回调函数【diffusers极速入门(三)】生成的图像尺寸与UNet和VAE之间的关系【diffusers极速入门(四)】EMA操作是什么?【diffusers极速入门(五)】扩散模型中的Schedul
- Diffusion中guidance_scale 的理解
不当菜鸡的程序媛
Diffusion人工智能stablediffusion
guidance_scale是一个控制生成图像引导程度的参数。它的含义和使用与论文Imagen:PhotorealisticText-to-ImageDiffusionModelswithComposableConditions中的公式(2)的引导权重类似。1.Classifier-FreeGuidance的背景Classifier-FreeGuidance是一种在扩散模型中提高生成样本质量的方法
- Pytorch深度学习指南 卷I --编程基础(A Beginner‘s Guide) 第1章 一个简单的回归
liuhui244
深度强化学习深度学习pytorch回归
本章正式开始使用pytorch的接口来实现对应的numpy的学习的过程,来学习模型的实现,我们会介绍numpy是如何学习的,以及我们如何一步步的通过torch的接口来实现简单化的过程,优雅的展示我们的代码,已经我们的代码完成的事情numpy的线性回归在此之前,先看看现在的numpy实现的学习的过程是什么样的#引入计算模块importnumpyasnpfromsklearn.linear_model
- 【AI工具】夸克AI试用:分析DeepSeek-V3技术报告
bylander
AI工具AI学习AI论文阅读人工智能学习gpt
安装了夸克AI,试用了一下AI总结功能,导入了DeepSeekV3的技术报告,使用了文章总结、问题提问、脑图、大纲等功能还不错,尤其是几个问题提问,回答的都不错,而且数学公司都是标准的markdown格式,不乱码,这一点就比其他的AI工具强。下面是分析的具体内容》AI文件总结DeepSeek-V3技术报告分析报告引言DeepSeek-V3是一个拥有6710亿参数的专家混合(MoE)语言模型,每次生
- AI大模型书籍推荐丨这本书必看:大语言模型 基础与前沿(附PDF)
LLM教程
人工智能大模型LLM程序员自然语言处理AI大模型编程
哈喽大家好!很久都没有更新大模型这块的书了,今天给大家说一下这本:《大语言模型:基础与前沿》,本书深入阐述了大语言模型的基本概念和算法、研究前沿以及应用,涵盖大语言模型的广泛主题,从基础到前沿,从方法到应用,涉及从方法论到应用场景方方面面的内容。作者简介熊涛,美国明尼苏达大学双城分校电子与计算机工程博士。曾在多家中美知名高科技公司担任高级管理职位和首席科学家,在人工智能的多个领域,包括大语言模型、
- QRCNN-BiLSTM卷积神经网络-双向长短期记忆神经网络分位数回归区间预测附Matlab完整源码
天天酷科研
分位数回归区间预测(QR)QRCNN-BiLSTM卷积双向长短期记忆神经网络分位数回归区间预测
效果模型描述QRCNN-BiLSTM卷积神经网络-双向长短期记忆神经网络分位数回归区间预测附Matlab完整源码QRCNN-BiLSTM(QuantileRegressionConvolutionalNeuralNetwork-BidirectionalLongShort-TermMemory)是一种结合了卷积神经网络(CNN)和双向长短期记忆神经网络(BiLSTM)的分位数回归模型,用于区间预测
- 架构学习之路
SUDO-1
架构学习
1.App架构的演进应用程序架构的演进单体架构:早期的应用程序通常是一个单一的、不可分割的应用,所有功能都紧密集成在一起。这种架构简单易懂,但在功能增加时容易变得难以维护。分层架构:为了应对单体架构的局限性,开发者开始采用分层的方式组织代码,比如经典的MVC(模型-视图-控制器)架构。这样的架构让代码更加模块化,便于管理和维护。服务端渲染(SSR)/客户端渲染(CSR):随着Web技术的进步,出现
- 期权定价的魔法:Black-Scholes公式(一)
区块链
前言对冲?动态对冲?对冲基金?这些术语,你可能都耳熟能详。但什么是对冲?它的理论基础和实际操作是什么?有多少人能够精确描述?更不用说,对冲基金的具体运作机制和动态对冲的复杂性了。这些问题的答案可以追溯到一个关键的金融工具:期权。你可能听说过期权能够帮助投资者管理风险、预测价格走势,甚至在市场下跌时实现收益。但你是否真正理解它背后精妙的定价机制?Black-Scholes模型,被称为金融界的“相对论
- SpringAI 搭建智能体(二):搭建客服系统智能体
drebander
AI编程springAIAgent
在现代人工智能应用中,智能体(Agent)是一个重要的概念,它的核心能力是自主性与灵活性。一个智能体不仅能够理解用户的需求,还能拆解任务、调用工具完成具体操作,并在复杂场景中高效运行。在本篇博客中,我们将围绕一个基于SpringAI的智能体实现,深入探讨智能体的概念、构建流程以及实际应用场景。1.什么是智能体?智能体是一种能够根据目标自主执行任务的系统。与传统的AI模型生成内容的模式不同,智能体通
- 神经网络入门推荐知识,神经网络入门书籍推荐
快乐的小肥熊
ai智能写作神经网络matlab人工智能python
适合初学者的神经网络和遗传算法资料遗传算法(GeneticAlgorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体(individual)组成。每个个体实际上是染色体(chromosome)带
- 目标检测算法以及常用库概述
YOLO大师
目标检测算法人工智能
YOLO目标检测创新改进与实战案例专栏专栏目录:YOLO有效改进系列及项目实战目录包含卷积,主干注意力,检测头等创新机制以及各种目标检测分割项目实战案例专栏链接:YOLO基础解析+创新改进+实战案例目标检测是在图像中发现并识别物体的过程,它是深度学习和图像处理领域的重要成果之一。在创建物体定位时,识别物体时,常见的一种方法是使用边界框。这种方法具有很高的通用,可以训练目标检测模型来识别和检测多个特
- 飞速搭震撼上线 开启软件开发智能化新篇章
低代码
近日,飞速低代码开发平台迎来了一项具有里程碑意义的重大更新——“飞速搭”正式上线。飞速搭通过深度融合前沿的人工智能技术,实现了从需求文档到应用发布的无缝衔接,一键智能生成应用,为软件开发领域带来了全新的突破和变革。“飞速搭”的实现路径高效而清晰。用户只需将需求文档或需求描述输入给预训练的大模型,这一步骤极大地简化了传统软件开发中繁琐的需求分析和文档编写过程,使用户能够更专注于核心需求的表达。大模型
- 基于CNN+Transformer混合模型实现交通流量时序预测(PyTorch版)
矩阵猫咪
cnntransformerpytorch卷积神经网络深度学习
前言系列专栏:【深度学习:算法项目实战】✨︎涉及医疗健康、财经金融、商业零售、食品饮料、运动健身、交通运输、环境科学、社交媒体以及文本和图像处理等诸多领域,讨论了各种复杂的深度神经网络思想,如卷积神经网络、循环神经网络、生成对抗网络、门控循环单元、长短期记忆、自然语言处理、深度强化学习、大型语言模型和迁移学习。随着城市化进程的加速,交通流量预测成为城市交通管理与规划中的关键任务。准确的交通流量预测
- 大语言模型应用指南:OpenAI大语言模型简介
AI大模型应用之禅
AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型应用指南:OpenAI大语言模型简介1.背景介绍1.1问题的由来在过去几年中,自然语言处理(NLP)领域取得了长足的进步,这主要归功于大型语言模型(LargeLanguageModels,LLMs)的出现和发展。LLMs是一种基于深度学习的人工智能模型,能够从大量文本数据中学习语言模式和语义关系,从而生成看似人类写作的自然语言输出。随着计算能力和数据可用性的不断提高,LLMs的规模也在不
- 预测未来,Python中的时间序列分析模型ARIMA
Python学研大本营
python开发语言
时间序列分析:Python中的ARIMA模型,ARIMA模型是一种常用的时间序列预测工具,可以使用statsmodels库在Python中实现。微信搜索关注《Python学研大本营》,加入读者群,分享更多精彩时间序列分析广泛用于预测和预报时间序列中的未来数据点。ARIMA模型被广泛用于时间序列预测,并被认为是最流行的方法之一。在本教程中,我们将学习如何在Python中搭建和评估用于时间序列预测的A
- Yii框架中的ActiveDataProvide如何便捷地获取数据
ac-er8888
前端php开发语言
Yii框架中的ActiveDataProvider是一个强大的工具,用于便捷地获取数据。它主要用于从数据库中查询数据模型,将结果按特定格式组织,并支持分页、排序和过滤等功能。以下是ActiveDataProvider如何便捷地获取数据的详细说明:一、基本使用创建ActiveDataProvider实例:需要提供模型类和查询条件作为参数。例如,若要获取所有已发布的文章,可以这样创建ActiveDat
- 浏览器沙箱机制
dbp5156
设计模式
简介沙箱模型技术是浏览器和其他应用程序中保护安全的一种组件关系设计模式,最初发明人为GreenBorder公司。2007年5月,谷歌公司收购了该公司,也将此项专利应用于chrome浏览器的研发中。转载于:https://www.cnblogs.com/LO-ME/p/10891824.html
- 一分钟学会MATLAB-时间序列预测模型
koi&
matlabAI编程gptAI写作学习
时间序列预测是使用过去的数据点来预测未来的数据点。MATLAB提供了强大的工具和函数库来建立和评估时间序列预测模型。以下是一个使用MATLAB进行时间序列预测的基本流程,包括数据准备、模型建立、模型评估和预测。时间序列预测实例代码1.数据准备首先,需要准备时间序列数据。这可以是从文件导入的数据,也可以是通过生成函数创建的数据。%示例:生成一个简单的正弦波数据作为时间序列t=0:0.01:10;%时
- lumion自动保存_19条新人必看的Lumion良好操作习惯
大苏牙
lumion自动保存
人生路上如果多有几个师父指导,估计“谁的人生不迷惘”这类的话也不会太流行,只怨师父多“隐居深山,自己修炼”,想学点真经,除了掏腰包就得自我摸索加网上查找。为了避免初识lumion时犯一些不必要的错误,在这为新手们准备了19条新手必读的Lumion良好使用习惯。1.准备工作,sketchup或者其他格式模型导入lumion前必须清理模型(多余贴图组件等)。2.如在Sketchup中已放置人物和树木,
- # AI绘图中的Embedding、CLIP、Flux中的Clip与LCM SDXL加速生成解析
迪小莫学AI
人工智能embedding
AI绘图中的Embedding、CLIP、Flux中的Clip与LCMSDXL加速生成解析在现代AI绘图和深度学习中,涉及了多个复杂的概念和技术,这些技术在图像生成、训练加速以及多模态学习等方面起着至关重要的作用。在这篇博客中,我们将讨论几个关键概念:Embedding、CLIP模型、Flux中的Clip,以及LCMSDXL加速生成技术的实现原理。1.AI绘图中的Embedding是什么意思?在A
- MongoDB 全文检索
lsx202406
开发语言
MongoDB全文检索MongoDB是一个流行的NoSQL数据库,以其灵活的数据模型和强大的查询语言而闻名。在MongoDB中,全文检索是一种功能,允许用户对存储在数据库中的文本数据进行复杂的搜索。全文检索对于构建搜索引擎、内容推荐系统和文本分析工具等应用非常有用。什么是全文检索?全文检索是一种信息检索技术,它允许用户通过搜索关键字或短语来查找文档中的文本。与传统的基于关键字的搜索不同,全文检索考
- Angular 1 深度解析:脏数据检查与 angular 性能优化
chouang1992
javascriptui前端框架ViewUI
TL;DR脏检查是一种模型到视图的数据映射机制,由$apply或$digest触发。脏检查的范围是整个页面,不受区域或组件划分影响使用尽量简单的绑定表达式提升脏检查执行速度尽量减少页面上绑定表达式的个数(单次绑定和ng-if)给ng-repeat添加trackby让angular复用已有元素什么是脏数据检查(Dirtychecking)Angular是一个MVVM前端框架,提供了双向数据绑定。所谓
- 神经网络的通俗介绍
courniche
神经网络人工智能算法
人工神经网络,是一种模仿人类大脑工作原理的数学模型。人类的大脑是由无数的小“工作站”组成的,每个工作站叫做“神经元”。这些神经元通过“电线”互相连接,负责接收、处理和传递信息。一、人类大脑神经网络人类大脑的神经网络大概长这个样子:人类大脑的神经网络包括神经元和连接神经元的突触组成,大脑神经电信号在网络中传递实现信息的处理和分析。二、人工神经网络人工神经网络(简称:神经网络),是一种模仿人类大脑工作
- 我从 2024 年的 LLM 应用开发实践中学到了什么?Part 1
编者按:"为什么明明选择了最先进的大语言模型,构建的AI产品却总是无法达到预期效果?"——这大概是今年众多技术团队都在苦恼的问题。从选择合适的商业场景,到组建专业团队,再到技术架构设计,每一步都充满挑战。一个错误的决策,可能导致数月的努力付诸东流,更遑论昂贵的模型调用成本。本文作者凭借近十年的Web应用和云原生开发经验,以及2024年深度参与LLM应用开发的第一手经历,为我们揭示了一个重要发现:成
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理