【LeetCode】455. 分发饼干(简单)——代码随想录算法训练营Day31

题目链接:455. 分发饼干

题目描述

假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。

对每个孩子 i,都有一个胃口值 g[i],这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j,都有一个尺寸 s[j] 。如果 s[j] >= g[i],我们可以将这个饼干 j 分配给孩子 i ,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。

示例 1:

输入: g = [1,2,3], s = [1,1]
输出: 1
解释: 
你有三个孩子和两块小饼干,3个孩子的胃口值分别是:1,2,3。
虽然你有两块小饼干,由于他们的尺寸都是1,你只能让胃口值是1的孩子满足。
所以你应该输出1。

示例 2:

输入: g = [1,2], s = [1,2,3]
输出: 2
解释: 
你有两个孩子和三块小饼干,2个孩子的胃口值分别是1,2。
你拥有的饼干数量和尺寸都足以让所有孩子满足。
所以你应该输出2.

提示:

  • 1 <= g.length <= 3 * 104
  • 0 <= s.length <= 3 * 104
  • 1 <= g[i], s[j] <= 231 - 1

文章讲解:代码随想录

视频讲解:贪心算法,你想先喂哪个小孩?| LeetCode:455.分发饼干_哔哩哔哩_bilibili

题解1:贪心算法

思路:每一步使用最小的饼干去匹配最小的胃口,就可以将最多的饼干分给孩子。

/**
 * @param {number[]} g
 * @param {number[]} s
 * @return {number}
 */
var findContentChildren = function(g, s) {
    // 先对数组排序
    s.sort((a, b) => a - b);
    g.sort((a, b) => a - b);
    let index = 0;
    // 遍历饼干数组,使用小饼干去匹配小胃口
    for (let i = 0; i < s.length; i++) {
        if (index < g.length && g[index] <= s[i]) {
            index++;
        }
    }
    return index;
};

分析:时间复杂度为 O(nlogn),空间复杂度为 O(1)。

题解2:贪心算法

思路:每一步使用最大的饼干去匹配最大的胃口。

/**
 * @param {number[]} g
 * @param {number[]} s
 * @return {number}
 */
var findContentChildren = function(g, s) {
    // 先对数组排序
    s.sort((a, b) => a - b);
    g.sort((a, b) => a - b);
    let res = 0;
    let index = s.length - 1;
    // 遍历饼干数组,使用大饼干去匹配大胃口
    for (let i = g.length - 1; i >= 0; i--) {
        if (index >= 0 && g[i] <= s[index]) {
            res++;
            index--;
        }
    }
    return res;
};

分析:时间复杂度为 O(nlogn),空间复杂度为 O(1)。

收获

在模拟出每个阶段都取最优解得到的是全局最优解时,就可以使用贪心算法。如果能举出一个贪心算法不行的反例,那么就不能使用贪心算法。

使用贪心算法先将问题分解为若干个子问题,找出适合的贪心策略,再求解每个子问题的最优解,合并成全局最优解。

你可能感兴趣的:(代码随想录算法训练营,#,LeetCode,贪心算法,算法,代码随想录算法训练营,leetcode,贪心算法)