C#,数值计算,矩阵的行列式(Determinant)、伴随矩阵(Adjoint)与逆矩阵(Inverse)的算法与源代码

本文发布矩阵(Matrix)的一些初级算法。

C#,数值计算,矩阵的行列式(Determinant)、伴随矩阵(Adjoint)与逆矩阵(Inverse)的算法与源代码_第1张图片

一、矩阵的行列式(Determinant)

矩阵行列式是指矩阵的全部元素构成的行列式,设A=(a)是数域P上的一个n阶矩阵,则所有A=(a)中的元素组成的行列式称为矩阵A的行列式,记为|A|或det(A)。若A,B是数域P上的两个n阶矩阵,k是P中的任一个数,则|AB|=|A||B|,|kA|=kⁿ|A|,|A*|=|A|,其中A*是A的伴随矩阵;若A是可逆矩阵,则|A|=|A|。
 

///


/// 计算 A[p,q] 位于 [,]temp 的块辅因子
///

///
///
///
///
///
private static void BlockCofactor(double[,] matrix, ref double[,] temp, int p, int q, int n)
{
    int i = 0;
    int j = 0;

    for (int row = 0; row < n; row++)
    {
        for (int col = 0; col < n; col++)
        {
            if (row != p && col != q)
            {
                temp[i, j++] = matrix[row, col];
                if (j == (n - 1))
                {
                    j = 0;
                    i++;
                }
            }
        }
    }
}

///


/// 求矩阵行列式(递归算法)
///

///
///
///
///
public static double Determinant(int N, double[,] matrix, int n)
{
    if (n == 1)
    {
        return matrix[0, 0];
    }

    double D = 0.0;
    double[,] temp = new double[N, N];
    int sign = 1;
    for (int f = 0; f < n; f++)
    {
        BlockCofactor(matrix, ref temp, 0, f, n);
        D += sign * matrix[0, f] * Determinant(N, temp, n - 1);
        sign = -sign;
    }
    return D;
}
 

/// 
/// 计算 A[p,q] 位于 [,]temp 的块辅因子
/// 
/// 
/// 
/// 
/// 
/// 
private static void BlockCofactor(double[,] matrix, ref double[,] temp, int p, int q, int n)
{
    int i = 0;
    int j = 0;

    for (int row = 0; row < n; row++)
    {
        for (int col = 0; col < n; col++)
        {
            if (row != p && col != q)
            {
                temp[i, j++] = matrix[row, col];
                if (j == (n - 1))
                {
                    j = 0;
                    i++;
                }
            }
        }
    }
}

/// 
/// 求矩阵行列式(递归算法)
/// 
/// 
/// 
/// 
/// 
public static double Determinant(int N, double[,] matrix, int n)
{
    if (n == 1)
    {
        return matrix[0, 0];
    }

    double D = 0.0;
    double[,] temp = new double[N, N];
    int sign = 1;
    for (int f = 0; f < n; f++)
    {
        BlockCofactor(matrix, ref temp, 0, f, n);
        D += sign * matrix[0, f] * Determinant(N, temp, n - 1);
        sign = -sign;
    }
    return D;
}

二、矩阵的伴随矩阵(Adjoint Matrix)

一个方形矩阵的伴随矩阵是一个类似于逆矩阵的概念。如果二维矩阵可逆,那么它的逆矩阵和它的伴随矩阵之间只差一个系数,对多维矩阵也存在这个规律。然而,伴随矩阵对不可逆的矩阵也有定义,并且不需要用到除法。
 

///


/// 伴随矩阵
///

///
///
public static void Adjoint(double[,] matrix, out double[,] adjoint)
{
    int N = matrix.GetLength(0);
    adjoint = new double[N, N];

    if (N == 1)
    {
        adjoint[0, 0] = 1.0;
        return;
    }

    int sign = 1;
    double[,] temp = new double[N, N];
    for (int i = 0; i < N; i++)
    {
        for (int j = 0; j < N; j++)
        {
            BlockCofactor(matrix, ref temp, i, j, N);
            sign = ((i + j) % 2 == 0) ? 1 : -1;
            adjoint[j, i] = (sign) * (Determinant(N, temp, N - 1));
        }
    }
}

/// 
/// 伴随矩阵
/// 
/// 
/// 
public static void Adjoint(double[,] matrix, out double[,] adjoint)
{
    int N = matrix.GetLength(0);
    adjoint = new double[N, N];

    if (N == 1)
    {
        adjoint[0, 0] = 1.0;
        return;
    }

    int sign = 1;
    double[,] temp = new double[N, N];
    for (int i = 0; i < N; i++)
    {
        for (int j = 0; j < N; j++)
        {
            BlockCofactor(matrix, ref temp, i, j, N);
            sign = ((i + j) % 2 == 0) ? 1 : -1;
            adjoint[j, i] = (sign) * (Determinant(N, temp, N - 1));
        }
    }
}

三、矩阵的逆矩阵(Inverse Matrix)

设A是一个n阶矩阵,若存在另一个n阶矩阵B,使得: AB=BA=E ,则称方阵A可逆,并称方阵B是A的逆矩阵。矩阵求逆,即求矩阵的逆矩阵。矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷。逆矩阵又是矩阵理论的很重要的内容,逆矩阵的求法自然也就成为线性代数研究的主要内容之一。

///


/// 矩阵求逆
///

///
///
///
public static bool Inverse(double[,] matrix, out double[,] inverse)
{
    int N = matrix.GetLength(0);
    inverse = new double[N, N];

    double det = Determinant(N, matrix, N);
    if (det == 0)
    {
        return false;
    }

    Adjoint(matrix, out double[,] adj);

    for (int i = 0; i < N; i++)
    {
        for (int j = 0; j < N; j++)
        {
            inverse[i, j] = adj[i, j] / (double)det;
        }
    }
    return true;
}
 

/// 
/// 矩阵求逆
/// 
/// 
/// 
/// 
public static bool Inverse(double[,] matrix, out double[,] inverse)
{
    int N = matrix.GetLength(0);
    inverse = new double[N, N];

    double det = Determinant(N, matrix, N);
    if (det == 0)
    {
        return false;
    }

    Adjoint(matrix, out double[,] adj);

    for (int i = 0; i < N; i++)
    {
        for (int j = 0; j < N; j++)
        {
            inverse[i, j] = adj[i, j] / (double)det;
        }
    }
    return true;
}

演算代码:

private void button1_Click(object sender, EventArgs e)
{
    double[,] A = { 
        {5, -2, 2, 7},
        {1, 0, 0, 3},
        {-3, 1, 5, 0},
        {3, -1, -9, 4}
    };

    double d = Algorithm_Gallery.Determinant(4, A, 4);

    StringBuilder sb = new StringBuilder();
    sb.Append(Welcome());
    sb.AppendLine("1、原始矩阵(Source Matrix):
");
    sb.Append(Algorithm_Gallery.ToHtml(A));
    sb.AppendLine("行列式(Determinant)=" + d + "
");
    
    Algorithm_Gallery.Adjoint(A, out double[,] adj);
    sb.AppendLine("
2、伴随矩阵(Adjoint Matrix):
");
    sb.Append(Algorithm_Gallery.ToHtml(adj));
    
    Algorithm_Gallery.Inverse(A, out double[,] inv);
    sb.AppendLine("
3、逆矩阵(Inverse Matrix):
");
    sb.Append(Algorithm_Gallery.ToHtml(inv));
    sb.Append(Bye());
    webBrowser1.DocumentText = sb.ToString();
}

private void button1_Click(object sender, EventArgs e)
{
    double[,] A = { 
        {5, -2, 2, 7},
        {1, 0, 0, 3},
        {-3, 1, 5, 0},
        {3, -1, -9, 4}
    };

    double d = Algorithm_Gallery.Determinant(4, A, 4);

    StringBuilder sb = new StringBuilder();
    sb.Append(Welcome());
    sb.AppendLine("1、原始矩阵(Source Matrix):
");     sb.Append(Algorithm_Gallery.ToHtml(A));     sb.AppendLine("行列式(Determinant)=" + d + "
");          Algorithm_Gallery.Adjoint(A, out double[,] adj);     sb.AppendLine("
2、伴随矩阵(Adjoint Matrix):
");     sb.Append(Algorithm_Gallery.ToHtml(adj));          Algorithm_Gallery.Inverse(A, out double[,] inv);     sb.AppendLine("
3、逆矩阵(Inverse Matrix):
");     sb.Append(Algorithm_Gallery.ToHtml(inv));     sb.Append(Bye());     webBrowser1.DocumentText = sb.ToString(); }

 打印矩阵的代码:


public static string ToHtml(double[,] y)
{
    int m = y.GetLength(0);
    int n = y.GetLength(1);
    StringBuilder sb = new StringBuilder();
    sb.AppendLine("");
    sb.AppendLine("

");
    for (int i = 0; i < m; i++)
    {
        sb.AppendLine("");
        for (int j = 0; j < n; j++)
        {
            sb.AppendLine("");
        }
        sb.AppendLine("");
    }
    sb.AppendLine("
" + String.Format("{0:F8}", y[i, j]) + "
");
    return sb.ToString();
}
 

————————————————————————————————

POWER BY  TRUFFER.CN 50018.COM 315SOFT.COM

public static string ToHtml(double[,] y)
{
    int m = y.GetLength(0);
    int n = y.GetLength(1);
    StringBuilder sb = new StringBuilder();
    sb.AppendLine("");
    sb.AppendLine("");
    for (int i = 0; i < m; i++)
    {
        sb.AppendLine("");
        for (int j = 0; j < n; j++)
        {
            sb.AppendLine("");
        }
        sb.AppendLine("");
    }
    sb.AppendLine("
" + String.Format("{0:F8}", y[i, j]) + "
");     return sb.ToString(); }

你可能感兴趣的:(C#算法演义,Algorithm,Recipes,C#数值计算,Numerical,Recipes,线性代数,矩阵行列式,伴随矩阵,矩阵求逆)