#include
#include
#include
#include
#include //使用OMP需要添加的头文件
#include
#include
#include // 直方图的可视化
#include
#include
#include
using namespace std;
int main()
{
//------------------加载点云数据-----------------
pcl::PointCloud::Ptr cloud(new pcl::PointCloud);
if (pcl::io::loadPCDFile("pcd/pig_view1.pcd", *cloud) == -1)//需使用绝对路径
{
PCL_ERROR("Could not read file\n");
}
//--------------------计算法线------------------
pcl::NormalEstimationOMP n;//OMP加速
pcl::PointCloud::Ptr normals(new pcl::PointCloud);
//建立kdtree来进行近邻点集搜索
pcl::search::KdTree::Ptr tree(new pcl::search::KdTree);
n.setNumberOfThreads(8);//设置openMP的线程数
n.setInputCloud(cloud);
n.setSearchMethod(tree);
n.setKSearch(20);
n.compute(*normals);//开始进行法向计算
// ------------------FPFH图像计算------------------
pcl::FPFHEstimationOMP f;
pcl::PointCloud::Ptr fpfh_images(new pcl::PointCloud());
f.setNumberOfThreads(12);
f.setInputCloud(cloud);
f.setInputNormals(normals);
f.setSearchMethod(tree);
f.setKSearch(30);
f.compute(*fpfh_images);
cout << "FPFH图像计算计算完成" << endl;
// 显示和检索第一点的自旋图像描述符向量。
pcl::FPFHSignature33 first_descriptor = fpfh_images->points[0];
cout << first_descriptor << endl;
pcl::visualization::PCLPlotter plotter;
plotter.addFeatureHistogram(*fpfh_images, 200); //设置的横坐标长度,该值越大,则显示的越细致
plotter.setWindowName("FPFH Image");
plotter.plot();
return 0;
}
pcl::FPFHEstimationOMP f;
pcl::PointCloud::Ptr fpfh_images(new pcl::PointCloud());
f.setNumberOfThreads(12);
f.setInputCloud(cloud);
f.setInputNormals(normals);
f.setSearchMethod(tree);
f.setKSearch(30);
f.compute(*fpfh_images);
cout << "FPFH图像计算计算完成" << endl;
// 显示和检索第一点的自旋图像描述符向量。
pcl::FPFHSignature33 first_descriptor = fpfh_images->points[0];
cout << first_descriptor << endl;
pcl::visualization::PCLPlotter plotter;
plotter.addFeatureHistogram(*fpfh_images, 200); //设置的横坐标长度,该值越大,则显示的越细致
plotter.setWindowName("FPFH Image");
plotter.plot();
pcl::FPFHEstimationOMP
f
,使用了OMP(Open Multi-Processing)进行多线程计算。指定了输入点云类型为pcl::PointXYZ
,输入法向量类型为pcl::Normal
,以及输出特征类型为pcl::FPFHSignature33
。pcl::PointCloud
pcl::PointCloud
类型的智能指针fpfh_images
,用于存储计算得到的FPFH特征。f.setNumberOfThreads(12);
f.setInputCloud(cloud);
cloud
是一个指向pcl::PointCloud
类型的指针,表示原始点云数据。f.setInputNormals(normals);
normals
是一个指向pcl::PointCloud
类型的指针,表示点云中每个点的法向量数据。f.setSearchMethod(tree);
tree
是一个用于加速邻域搜索的数据结构,例如kd-tree或octree。这个参数可以根据点云的大小和分布来调整,以获得更好的性能。f.setKSearch(30);
f.compute(*fpfh_images);
fpfh_images
中。cout << "FPFH图像计算计算完成" << endl;
pcl::FPFHSignature33 first_descriptor = fpfh_images->points[0];
cout << first_descriptor << endl;
pcl::visualization::PCLPlotter plotter;
plotter.addFeatureHistogram(*fpfh_images, 200);
plotter.setWindowName("FPFH Image");
plotter.plot();
总的来说,这段代码的作用是计算并可视化点云的FPFH特征。参数的设置会直接影响特征的计算和可视化效果,因此需要根据具体的数据和需求进行调整。
#include
#include
#include
#include
#include
#include
#include
#include
#include
typedef pcl::PointCloud pointcloud;
typedef pcl::PointCloud pointnormal;
typedef pcl::PointCloud fpfhFeature;
fpfhFeature::Ptr compute_fpfh_feature(pointcloud::Ptr input_cloud, pcl::search::KdTree::Ptr tree)
{
pointnormal::Ptr normals(new pointnormal);
pcl::NormalEstimationOMP n;
n.setInputCloud(input_cloud);
n.setNumberOfThreads(12);
n.setSearchMethod(tree);
n.setKSearch(20);
n.compute(*normals);
fpfhFeature::Ptr fpfh(new fpfhFeature);
pcl::FPFHEstimationOMP f;
f.setNumberOfThreads(12);
f.setInputCloud(input_cloud);
f.setInputNormals(normals);
f.setSearchMethod(tree);
f.setKSearch(30);
f.compute(*fpfh);
return fpfh;
}
int main(int argc, char** argv)
{
pointcloud::Ptr source_cloud(new pointcloud);
pointcloud::Ptr target_cloud(new pointcloud);
pcl::io::loadPCDFile("pcd/pig_view1.pcd", *source_cloud);
pcl::io::loadPCDFile("pcd/pig_view2.pcd", *target_cloud);
pcl::search::KdTree::Ptr tree(new pcl::search::KdTree());
fpfhFeature::Ptr source_fpfh = compute_fpfh_feature(source_cloud, tree);
fpfhFeature::Ptr target_fpfh = compute_fpfh_feature(target_cloud, tree);
pcl::registration::CorrespondenceEstimation crude_cor_est;
boost::shared_ptr cru_correspondences(new pcl::Correspondences);
crude_cor_est.setInputSource(source_fpfh);
crude_cor_est.setInputTarget(target_fpfh);
crude_cor_est.determineCorrespondences(*cru_correspondences, 0.4);
Eigen::Matrix4f Transform = Eigen::Matrix4f::Identity();
pcl::registration::TransformationEstimationSVD::Ptr trans(new pcl::registration::TransformationEstimationSVD);
trans->estimateRigidTransformation(*source_cloud, *target_cloud, *cru_correspondences, Transform);
cout << "变换矩阵为:\n" << Transform << endl;
boost::shared_ptrviewer(new pcl::visualization::PCLVisualizer("v"));
viewer->setBackgroundColor(0, 0, 0);
// 对目标点云着色可视化 (red).
pcl::visualization::PointCloudColorHandlerCustomtarget_color(target_cloud, 255, 0, 0);
viewer->addPointCloud(target_cloud, target_color, "target cloud");
viewer->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 2, "target cloud");
// 对源点云着色可视化 (green).
pcl::visualization::PointCloudColorHandlerCustominput_color(source_cloud, 0, 255, 0);
viewer->addPointCloud(source_cloud, input_color, "input cloud");
viewer->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 2, "input cloud");
//对应关系可视化
viewer->addCorrespondences(source_cloud, target_cloud, *cru_correspondences, "correspondence");
//viewer->initCameraParameters();
while (!viewer->wasStopped())
{
viewer->spinOnce(100);
boost::this_thread::sleep(boost::posix_time::microseconds(100000));
}
return 0;
}
pcl::registration::CorrespondenceEstimation crude_cor_est;
boost::shared_ptr cru_correspondences(new pcl::Correspondences);
crude_cor_est.setInputSource(source_fpfh);
crude_cor_est.setInputTarget(target_fpfh);
crude_cor_est.determineCorrespondences(*cru_correspondences, 0.4);
Eigen::Matrix4f Transform = Eigen::Matrix4f::Identity();
pcl::registration::TransformationEstimationSVD::Ptr trans(new pcl::registration::TransformationEstimationSVD);
trans->estimateRigidTransformation(*source_cloud, *target_cloud, *cru_correspondences, Transform);
pcl::registration::CorrespondenceEstimation
crude_cor_est
。这个对象的类型是pcl::registration::CorrespondenceEstimation
,它用于估计两个点云之间的对应关系。boost::shared_ptr
pcl::Correspondences
类型的智能指针cru_correspondences
,用于存储对应关系。crude_cor_est.setInputSource(source_fpfh);
source_fpfh
是指向源点云的FPFH特征的指针。crude_cor_est.setInputTarget(target_fpfh);
target_fpfh
是指向目标点云的FPFH特征的指针。crude_cor_est.determineCorrespondences(*cru_correspondences, 0.4);
0.4
是一个阈值,用于控制匹配的严格度。更高的值会导致更宽松的匹配。Eigen::Matrix4f Transform = Eigen::Matrix4f::Identity();
pcl::registration::TransformationEstimationSVD
trans
。这里使用了SVD(奇异值分解)方法进行刚性变换的估计。trans->estimateRigidTransformation(*source_cloud, *target_cloud, *cru_correspondences, Transform);
Transform
中。参数的设置会影响配准的结果。例如,对应关系估计的阈值会影响匹配的严格度,而刚性变换的估计方法则会影响配准的准确度和鲁棒性。需要根据具体的应用场景和数据特点来选择合适的参数值
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
typedef pcl::PointXYZ PointT;
typedef pcl::PointCloud PointCloud;
typedef pcl::FPFHSignature33 FPFHT;
typedef pcl::PointCloud PointCloudfpfh;
typedef pcl::search::KdTree Tree;
// 关键点提取
void extract_keypoint(PointCloud::Ptr& cloud, PointCloud::Ptr& keypoint, Tree::Ptr& tree)
{
pcl::ISSKeypoint3D iss;
iss.setInputCloud(cloud);
iss.setSearchMethod(tree);
iss.setNumberOfThreads(8); //初始化调度器并设置要使用的线程数
iss.setSalientRadius(5); // 设置用于计算协方差矩阵的球邻域半径
iss.setNonMaxRadius(5); // 设置非极大值抑制应用算法的半径
iss.setThreshold21(0.95); // 设定第二个和第一个特征值之比的上限
iss.setThreshold32(0.95); // 设定第三个和第二个特征值之比的上限
iss.setMinNeighbors(6); // 在应用非极大值抑制算法时,设置必须找到的最小邻居数
iss.compute(*keypoint);
}
// 法线计算和 计算特征点的Spinimage描述子
void computeKeyPointsFPFH(PointCloud::Ptr& cloud_in, PointCloud::Ptr& key_cloud, PointCloudfpfh::Ptr& dsc, Tree::Ptr& tree)
{
pcl::NormalEstimationOMP n;//OMP加速
pcl::PointCloud::Ptr normals(new pcl::PointCloud);
n.setNumberOfThreads(6);//设置openMP的线程数
n.setInputCloud(key_cloud);
n.setSearchSurface(cloud_in);
n.setSearchMethod(tree);
//n.setKSearch(10);
n.setRadiusSearch(0.3);
n.compute(*normals);
pcl::FPFHEstimationOMP f;
f.setNumberOfThreads(12);
f.setInputCloud(key_cloud);
f.setInputNormals(normals);
f.setSearchMethod(tree);
f.setKSearch(30);
f.compute(*dsc);
}
// 点云可视化
void visualize_pcd(PointCloud::Ptr icp_result, PointCloud::Ptr cloud_target)
{
//创建初始化目标
pcl::visualization::PCLVisualizer viewer("registration Viewer");
pcl::visualization::PointCloudColorHandlerCustom final_h(icp_result, 0, 255, 0);
pcl::visualization::PointCloudColorHandlerCustom tgt_h(cloud_target, 255, 0, 0);
viewer.setBackgroundColor(0, 0, 0);
viewer.addPointCloud(cloud_target, tgt_h, "tgt cloud");
viewer.addPointCloud(icp_result, final_h, "final cloud");
while (!viewer.wasStopped())
{
viewer.spinOnce(100);
boost::this_thread::sleep(boost::posix_time::microseconds(100000));
}
}
int main()
{
// 加载源点云和目标点云
PointCloud::Ptr cloud(new PointCloud);
PointCloud::Ptr cloud_target(new PointCloud);
if (pcl::io::loadPCDFile("pcd/pig_view1.pcd", *cloud) == -1)
{
PCL_ERROR("加载点云失败\n");
}
if (pcl::io::loadPCDFile("pcd/pig_view2.pcd", *cloud_target) == -1)
{
PCL_ERROR("加载点云失败\n");
}
visualize_pcd(cloud, cloud_target);
//关键点
pcl::PointCloud::Ptr keypoints1(new pcl::PointCloud);
pcl::PointCloud::Ptr keypoints2(new pcl::PointCloud);
Tree::Ptr tree(new Tree);
extract_keypoint(cloud, keypoints1, tree);
extract_keypoint(cloud_target, keypoints2, tree);
cout << "iss完成!" << endl;
cout << "cloud的关键点的个数:" << keypoints1->size() << endl;
cout << "cloud_target的关键点的个数:" << keypoints2->size() << endl;
// 使用SpinImage描述符计算特征
PointCloudfpfh::Ptr source_features(new PointCloudfpfh);
PointCloudfpfh::Ptr target_features(new PointCloudfpfh);
computeKeyPointsFPFH(cloud, keypoints1, source_features, tree);
computeKeyPointsFPFH(cloud_target, keypoints2, target_features, tree);
cout << "FPFH完成!" << endl;
//SAC配准
pcl::SampleConsensusInitialAlignment scia;
scia.setInputSource(keypoints1);
scia.setInputTarget(keypoints2);
scia.setSourceFeatures(source_features);
scia.setTargetFeatures(target_features);
scia.setMinSampleDistance(7); // 设置样本之间的最小距离
scia.setNumberOfSamples(100); // 设置每次迭代计算中使用的样本数量(可省),可节省时间
scia.setCorrespondenceRandomness(6);// 在选择随机特征对应时,设置要使用的邻居的数量;
PointCloud::Ptr sac_result(new PointCloud);
scia.align(*sac_result);
Eigen::Matrix4f sac_trans;
sac_trans = scia.getFinalTransformation();
cout << "SAC配准完成!" << endl;
//icp配准
PointCloud::Ptr icp_result(new PointCloud);
pcl::IterativeClosestPoint icp;
icp.setInputSource(keypoints1);
icp.setInputTarget(keypoints2);
icp.setMaxCorrespondenceDistance(20);
icp.setMaximumIterations(35); // 最大迭代次数
icp.setTransformationEpsilon(1e-10); // 两次变化矩阵之间的差值
icp.setEuclideanFitnessEpsilon(0.01);// 均方误差
icp.align(*icp_result, sac_trans);
cout << "ICP配准完成!" << endl;
// 输出配准结果
std::cout << "ICP converged: " << icp.hasConverged() << std::endl;
std::cout << "Transformation matrix:\n" << icp.getFinalTransformation() << std::endl;
Eigen::Matrix4f icp_trans;
icp_trans = icp.getFinalTransformation();
cout << icp_trans << endl;
使用创建的变换对未过滤的输入点云进行变换
pcl::transformPointCloud(*cloud, *icp_result, icp_trans);
visualize_pcd(icp_result, cloud_target);
return 0;
}
我之前在iss关键点检测以及SAC-IA粗配准-CSDN博客
和Spin Image自旋图像描述符可视化以及ICP配准-CSDN博客以及本章第一部分已经解释了大部分函数,这里就不赘述了