- LLM中 最后一个词语的表征(隐藏状态)通常会融合前面所有词语的信息吗?
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpython机器学习算法深度学习人工智能
LLM中最后一个词语的表征(隐藏状态)通常会融合前面所有词语的信息吗?在大语言模型(LLM)中,最后一个词语的表征(隐藏状态)通常会融合前面所有词语的信息,这是由LLM的核心架构(以Transformer为基础)决定的,具体可以从以下角度理解:1.核心机制:自注意力(Self-Attention)的作用现代LLM(如GPT系列、Qwen等)均基于Transformer架构,其核心是自注意力机制。在
- LLM的表征做减法的是什么,自然语言是一个矩阵,怎么进行减法的
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpython计算机视觉人工智能机器学习算法深度学习
LLM的表征做减法的是什么,自然语言是一个矩阵,怎么进行减法的有个假设:就是最后一个词语融合了前面词语的信息减法操作主要用于提取模型内部表征中的"诚实性"概念向量。具体来说,这是通过对比诚实和不诚实场景下的模型隐藏状态实现的。importtorchfromtransformersimportAutoModelForCausalLM,AutoTokenizer,AutoConfigimportnum
- 深度学习图像分类数据集—桃子识别分类
AI街潜水的八角
深度学习图像数据集深度学习分类人工智能
该数据集为图像分类数据集,适用于ResNet、VGG等卷积神经网络,SENet、CBAM等注意力机制相关算法,VisionTransformer等Transformer相关算法。数据集信息介绍:桃子识别分类:['B1','M2','R0','S3']训练数据集总共有6637张图片,每个文件夹单独放一种数据各子文件夹图片统计:·B1:1601张图片·M2:1800张图片·R0:1601张图片·S3:
- 【AI大模型】LLM模型架构深度解析:BERT vs. GPT vs. T5
我爱一条柴ya
学习AI记录ai人工智能AI编程python
引言Transformer架构的诞生(Vaswanietal.,2017)彻底改变了自然语言处理(NLP)。在其基础上,BERT、GPT和T5分别代表了三种不同的模型范式,主导了预训练语言模型的演进。理解它们的差异是LLM开发和学习的基石。一、核心架构对比特性BERT(BidirectionalEncoder)GPT(GenerativePre-trainedTransformer)T5(Text
- Ollama平台里最流行的embedding模型: nomic-embed-text 模型介绍和实践
skywalk8163
人工智能embedding人工智能服务器
nomic-embed-text模型介绍nomic-embed-text是一个基于SentenceTransformers库的句子嵌入模型,专门用于特征提取和句子相似度计算。该模型在多个任务上表现出色,特别是在分类、检索和聚类任务中。其核心优势在于能够生成高质量的句子嵌入,这些嵌入在语义上非常接近,从而在相似度计算和分类任务中表现优异。之所以选用这个模型,是因为在Ollama网站查找这个模型,发现
- LLamaFactory 微调Qwen-VL-3B时报错TypeError: argument of type ‘NoneType‘ is not iterable
闲云野鹤01
大模型linux视觉检测transformer
LLamaFactory微调Qwen-VL-3B时报错如下:TypeError:argumentoftype'NoneType'isnotiterable修改方式如下所示:进入\src\llamafactory文件夹,打开cli.py文件在文件头添加如下语句fromtransformersimportmodeling_utilsifnothasattr(modeling_utils,"ALL_PA
- 从RNN循环神经网络到Transformer注意力机制:解析神经网络架构的华丽蜕变
熊猫钓鱼>_>
神经网络rnntransformer
1.引言在自然语言处理和序列建模领域,神经网络架构经历了显著的演变。从早期的循环神经网络(RNN)到现代的Transformer架构,这一演变代表了深度学习方法在处理序列数据方面的重大进步。本文将深入比较这两种架构,分析它们的工作原理、优缺点,并通过实验结果展示它们在实际应用中的性能差异。2.循环神经网络(RNN)2.1基本原理循环神经网络是专门为处理序列数据而设计的神经网络架构。RNN的核心思想
- 目前主流图像分类模型的详细对比分析
@comefly
闲聊linux运维服务器
以下是目前主流图像分类模型的详细对比分析,结合性能、架构特点及应用场景进行整理:一、主流模型架构分类与定量对比模型名称架构类型核心特点ImageNetTop-1准确率参数量(百万)计算效率典型应用场景ResNetCNN残差连接解决梯度消失,支持超深网络(如ResNet-152)76.1%25.6中等通用分类、目标检测ViTTransformer将图像分割为patches,用标准Transforme
- 【深度学习实战】当前三个最佳图像分类模型的代码详解
云博士的AI课堂
大模型技术开发与实践哈佛博后带你玩转机器学习深度学习深度学习人工智能分类模型机器学习TransformerEfficientNetConvNeXt
下面给出三个在当前图像分类任务中精度表现突出的模型示例,分别基于SwinTransformer、EfficientNet与ConvNeXt。每个模型均包含:训练代码(使用PyTorch)从预训练权重开始微调(也可注释掉预训练选项,从头训练)数据集目录结构:└──dataset_root├──buy#第一类图像└──nobuy#第二类图像随机拆分:80%训练,20%验证每个Epoch输出一次loss
- Transformer推理性能优化技术很重要的一个就是K V cache,能否通俗分析,可以结合代码?
javastart
aigc大模型人工智能transformerAIGC性能优化
原文:Transformer推理性能优化技术很重要的一个就是KVcache,能否通俗分析,可以结合代码?-知乎为什么要研究KVcache?设输入序列的长度为s,输出序列的长度为n,模型深度为l,维度为h,以FP16来保存KVcache,那么KVcache的峰值显存占用大小为b(s+n)h∗l∗2∗2=4blh(s+n)。这里第一个2表示K/Vcache,第二个2表示FP16占2个bytes。以GP
- 本地Qwen中医问诊小程序系统开发
Kelaru
AI大模型小程序AIpythonflaskproject
一、后端API(Flask+Qwen)1.环境准备1.1安装Python3(如未安装)```bashbrewinstallpython```1.2创建虚拟环境并激活python3-mvenvqwen_envsourceqwen_env/bin/activate1.3安装依赖bashpipinstalltorchtransformersflaskflask-cors2.编写后端API代码新建`app
- 【零基础学AI】第36讲:GPT模型原理
1989
0基础学AI人工智能gptlstmrnnYOLO目标检测
本节课你将学到理解GPT模型的基本原理掌握Transformer解码器的工作机制实现一个简单的文本生成应用开始之前环境要求Python3.8+安装包:pipinstalltransformerstorch硬件:CPU即可运行(GPU可加速)前置知识了解基本的神经网络概念(第23讲内容)熟悉Python编程基础核心概念什么是GPT?GPT(GenerativePre-trainedTransform
- 华为OD技术面试高频考点(算法篇、AI方向)
一、Transformer核心机制:自注意力(Self-Attention)公式:Attention=softmax(QK^T/√d_k)v运作原理:1.Q/K/V矩阵:输入向量通过线性变换生成Query(查询)、Key(键)、Value(值)2.注意力权重:Softmax(QKT/√d_k)→计算词与词之间的关联度3.输出:权重与Value加权求和→捕获长距离依赖-优势:并行计算、全局上下文感知
- Transformer、BERT等模型原理与应用案例
程序猿全栈の董(董翔)
人工智能热门技术领域transformerbert深度学习
Transformer、BERT等模型原理与应用案例Transformer模型原理Transformer是一种基于注意力机制的深度学习模型架构,由Vaswani等人在2017年的论文"AttentionIsAllYouNeed"中提出。与传统的循环神经网络(RNN)和卷积神经网络(CNN)不同,Transformer完全依赖自注意力机制来处理输入序列的全局依赖关系。核心组件多头自注意力机制(Mul
- 【论文笔记ing】Pointerformer: Deep Reinforced Multi-Pointer Transformer for the Traveling Salesman Problem
Booksort
online笔记论文论文阅读transformer深度学习
论文中使用一个PointerFormer模型编码器部分:可逆残差模型堆叠解码器部分:指针网络自回归对于一次任务而言,推理阶段:编码器部分:一次解码器部分:循环N次,直至任务结束在训练阶段,使用强化学习,对于一个N个节点的TSP实例,算法中会以不同的起点,跑N次,得到N个轨迹,以满足TSP的对称特性,表示这都是属于一个TSP问题的(真实)解然后会计算这样表示归一化奖励,得到一个advantage,然
- Gemini vs DeepSeek:Transformer 架构下的技术路线差异与企业级选择
charles666666
transformer架构深度学习语言模型产品经理人工智能
一、引言:从商业价值切入Gemini和DeepSeek都基于Transformer架构,但在技术路线和应用场景上各有侧重。本文将解密同源Transformer下的技术分野,帮助企业做出更明智的大模型选型决策。二、Transformer核心机制精要Transformer架构是现代大语言模型的基础,其核心机制包括自注意力机制和前馈神经网络。自注意力机制使模型能够捕捉序列中元素的全局依赖关系,但也是GP
- VIT视觉
妄想成为master
opencv目标检测机器学习数据挖掘语音识别人工智能计算机视觉
VisionTransformer视觉和语言(Vision-Language)NLPrompt:Noise-LabelPromptLearningforVision-LanguageModelsPaper:https://arxiv.org/abs/2412.01256Code:GitHub-qunovo/NLPromptPhysVLM:EnablingVisualLanguageModelsto
- vLLM 优化与调优:提升模型性能的关键策略
强哥之神
人工智能深度学习计算机视觉deepseek智能体vllm
在当今人工智能领域,大语言模型(LLM)的应用日益广泛,而优化和调优这些模型的性能成为了至关重要的任务。vLLM作为一种高效的推理引擎,提供了多种策略来提升模型的性能。本文将深入探讨vLLMV1的优化与调优策略,帮助读者更好地理解和应用这些技术。抢占式调度(Preemption)由于Transformer架构的自回归特性,有时键值缓存(KVcache)空间不足以处理所有批量请求。在这种情况下,vL
- 【AI大模型】Transformer架构位置编码
我爱一条柴ya
学习AI记录人工智能神经网络aiAI编程
Transformer架构中的位置编码(PositionalEncoding)是其核心设计之一,用于解决一个关键问题:Self-Attention机制本身对输入元素的顺序是“无感知”的(permutationinvariant)。问题:为什么需要位置编码?Self-Attention的本质缺陷:Self-Attention通过计算所有元素对之间的关联来工作。然而,它只关心元素是什么(x_i的内容)
- 基于大模型的急性出血坏死性胰腺炎预测技术方案
LCG元
人工智能python
目录一、算法实现伪代码1.数据预处理与特征工程2.大模型训练(以Transformer为例)3.实时预测与动态调整二、模块流程图1.术前预测流程2.术中动态决策流程3.术后护理流程三、系统集成方案1.系统架构图2.核心模块交互流程四、系统部署拓扑图1.物理部署拓扑2.部署说明五、技术验证方案1.交叉验证流程2.实验验证设计六、健康教育模块示例一、算法实现伪代码1.数据预处理与特征工程#数据清洗与归
- 计算机视觉:Transformer的轻量化与加速策略
xcLeigh
计算机视觉CV计算机视觉transformer人工智能AI策略
计算机视觉:Transformer的轻量化与加速策略一、前言二、Transformer基础概念回顾2.1Transformer架构概述2.2自注意力机制原理三、Transformer轻量化策略3.1模型结构优化3.1.1减少层数和头数3.1.2优化Patch大小3.2参数共享与剪枝3.2.1参数共享3.2.2剪枝3.3知识蒸馏四、Transformer加速策略4.1模型量化4.2.2TPU加速4.
- 【Spring AI】09. ETL 管道
文章目录ETLPipelineAPI概述入门指南ETL接口和实现DocumentReaderJsonReaderTextReaderPagePdfDocumentReaderParagraphPdfDocumentReaderTikaDocumentReaderDocumentTransformerTextSplitterTokenTextSplitterContentFormatTransfor
- huggingface 笔记: Trainer
UQI-LIUWJ
笔记人工智能
Trainer是一个为Transformers中PyTorch模型设计的完整训练与评估循环只需将模型、预处理器、数据集和训练参数传入Trainer,其余交给它处理,即可快速开始训练自动处理以下训练流程:根据batch计算loss使用backward()计算梯度根据梯度更新权重重复上述流程直到达到指定的epoch数1配置TrainingArguments使用TrainingArguments定义训练
- huggingface笔记:文本生成Text generation
UQI-LIUWJ
python库整理笔记深度学习python
1加载LLM模型fromtransformersimportAutoTokenizer,AutoModelForCausalLMimporttorchimportosmodel=AutoModelForCausalLM.from_pretrained("gpt2",device_map="auto",#自动分配到所有可用设备(优先GPU)torch_dtype=torch.bfloat16)2编码
- 揭秘图像LLM:从像素到语言的智能转换
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpython计算机视觉深度学习人工智能机器学习算法语言模型
图像LLM是怎么工作图像LLM(多模态大语言模型)的核心是将图像转化为语言模型能理解的“语言”,并与文本深度融合。以下结合CLIP、DALL-E、GPT-4V等主流模型,通过具体例子说明其工作机制:一、图像→特征向量:从像素到“密码”例子:识别“戴墨镜的猫”视觉编码器提取特征使用ResNet或ViT(VisionTransformer)作为图像编码器,将图片分解为局部像素块(如16x16像素)。每
- LLM(大语言模型)能识别图像的核心原因:图像和文本记性特征识别且对其
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpython语言模型人工智能自然语言处理算法均值算法prompt
LLM(大语言模型)能识别图像的核心原因:图像和文本记性特征识别且对其在于跨模态对齐技术——通过训练将图像和文本映射到同一语义空间,使语言模型能够理解视觉信息。一、为什么LLM能识别图像?核心技术原理1.跨模态对齐:让图像与文本说同一种语言向量空间统一:图像通过CNN或ViT编码为特征向量(如512维),文本通过Transformer编码为语义向量(如768维)。CLIP等模型通过对比学习优化编码
- python transformers库笔记(BertForTokenClassification类)
夏末蝉未鸣01
自然语言处理pythontransformer自然语言处理
BertForTokenClassification类BertForTokenclassification类是HuggingFacetransformers库中专门为基于BERT的序列标注任务(如命名实体识别NER、词性标注POS)设计的模型类。它在BERT的基础上添加了一个线性分类层,用于对每个token进行分类。1、特点任务类型:专为Token-level分类设计,即对输入序列中的每一个tok
- 【AI与数据管理】基于AI大模型的企业元数据管理方案
暴躁小师兄数据学院
人工智能ai语言模型
基于AI大模型的元数据关键解决方案元数据(metadata)是描述数据的数据,例如数据的来源、结构、类型和质量信息。它在数据管理、分析和应用中至关重要。随着人工智能(AI)大模型(如基于Transformer的模型)的发展,这些模型凭借其强大的自然语言处理、模式识别和生成能力,为元数据处理提供了高效、自动化的解决方案。下面,我将逐步解释基于AI大模型的元数据关键解决方案,帮助您理解核心方法、挑战和
- AIGC空间智能在服装设计领域的颠覆性变革
AI天才研究院
ChatGPT实战ChatGPTAI大模型应用入门实战与进阶AIGCai
AIGC空间智能在服装设计领域的颠覆性变革关键词:AIGC、空间智能、服装设计、数字孪生、生成式AI、3D人体建模、智能设计系统摘要:本文深入探讨AIGC(人工智能生成内容)与空间智能技术在服装设计领域的融合创新,揭示其如何通过三维人体建模、场景模拟、智能生成算法重构传统设计流程。从技术原理层解析空间智能的核心模块,结合生成对抗网络(GAN)、Transformer模型等前沿算法,展示从创意生成到
- PagedAttention和Continuous Batching
流浪大人
大模型深度学习人工智能机器学习
PagedAttention是什么PagedAttention是一种用于优化Transformer架构中注意力机制的技术,主要用于提高大语言模型在推理阶段的效率,特别是在处理长序列数据时能有效减少内存碎片和提高内存利用率。它借鉴了操作系统中虚拟内存分页机制的思想。工作原理传统注意力机制的局限性:传统的注意力机制在处理长序列时,需要为每个位置计算注意力得分并存储中间结果,这会导致内存占用随着序列长度
- mondb入手
木zi_鸣
mongodb
windows 启动mongodb 编写bat文件,
mongod --dbpath D:\software\MongoDBDATA
mongod --help 查询各种配置
配置在mongob
打开批处理,即可启动,27017原生端口,shell操作监控端口 扩展28017,web端操作端口
启动配置文件配置,
数据更灵活 
- 大型高并发高负载网站的系统架构
bijian1013
高并发负载均衡
扩展Web应用程序
一.概念
简单的来说,如果一个系统可扩展,那么你可以通过扩展来提供系统的性能。这代表着系统能够容纳更高的负载、更大的数据集,并且系统是可维护的。扩展和语言、某项具体的技术都是无关的。扩展可以分为两种:
1.
- DISPLAY变量和xhost(原创)
czmmiao
display
DISPLAY
在Linux/Unix类操作系统上, DISPLAY用来设置将图形显示到何处. 直接登陆图形界面或者登陆命令行界面后使用startx启动图形, DISPLAY环境变量将自动设置为:0:0, 此时可以打开终端, 输出图形程序的名称(比如xclock)来启动程序, 图形将显示在本地窗口上, 在终端上输入printenv查看当前环境变量, 输出结果中有如下内容:DISPLAY=:0.0
- 获取B/S客户端IP
周凡杨
java编程jspWeb浏览器
最近想写个B/S架构的聊天系统,因为以前做过C/S架构的QQ聊天系统,所以对于Socket通信编程只是一个巩固。对于C/S架构的聊天系统,由于存在客户端Java应用,所以直接在代码中获取客户端的IP,应用的方法为:
String ip = InetAddress.getLocalHost().getHostAddress();
然而对于WEB
- 浅谈类和对象
朱辉辉33
编程
类是对一类事物的总称,对象是描述一个物体的特征,类是对象的抽象。简单来说,类是抽象的,不占用内存,对象是具体的,
占用存储空间。
类是由属性和方法构成的,基本格式是public class 类名{
//定义属性
private/public 数据类型 属性名;
//定义方法
publ
- android activity与viewpager+fragment的生命周期问题
肆无忌惮_
viewpager
有一个Activity里面是ViewPager,ViewPager里面放了两个Fragment。
第一次进入这个Activity。开启了服务,并在onResume方法中绑定服务后,对Service进行了一定的初始化,其中调用了Fragment中的一个属性。
super.onResume();
bindService(intent, conn, BIND_AUTO_CREATE);
- base64Encode对图片进行编码
843977358
base64图片encoder
/**
* 对图片进行base64encoder编码
*
* @author mrZhang
* @param path
* @return
*/
public static String encodeImage(String path) {
BASE64Encoder encoder = null;
byte[] b = null;
I
- Request Header简介
aigo
servlet
当一个客户端(通常是浏览器)向Web服务器发送一个请求是,它要发送一个请求的命令行,一般是GET或POST命令,当发送POST命令时,它还必须向服务器发送一个叫“Content-Length”的请求头(Request Header) 用以指明请求数据的长度,除了Content-Length之外,它还可以向服务器发送其它一些Headers,如:
- HttpClient4.3 创建SSL协议的HttpClient对象
alleni123
httpclient爬虫ssl
public class HttpClientUtils
{
public static CloseableHttpClient createSSLClientDefault(CookieStore cookies){
SSLContext sslContext=null;
try
{
sslContext=new SSLContextBuilder().l
- java取反 -右移-左移-无符号右移的探讨
百合不是茶
位运算符 位移
取反:
在二进制中第一位,1表示符数,0表示正数
byte a = -1;
原码:10000001
反码:11111110
补码:11111111
//异或: 00000000
byte b = -2;
原码:10000010
反码:11111101
补码:11111110
//异或: 00000001
- java多线程join的作用与用法
bijian1013
java多线程
对于JAVA的join,JDK 是这样说的:join public final void join (long millis )throws InterruptedException Waits at most millis milliseconds for this thread to die. A timeout of 0 means t
- Java发送http请求(get 与post方法请求)
bijian1013
javaspring
PostRequest.java
package com.bijian.study;
import java.io.BufferedReader;
import java.io.DataOutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.HttpURL
- 【Struts2二】struts.xml中package下的action配置项默认值
bit1129
struts.xml
在第一部份,定义了struts.xml文件,如下所示:
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 2.3//EN"
"http://struts.apache.org/dtds/struts
- 【Kafka十三】Kafka Simple Consumer
bit1129
simple
代码中关于Host和Port是割裂开的,这会导致单机环境下的伪分布式Kafka集群环境下,这个例子没法运行。
实际情况是需要将host和port绑定到一起,
package kafka.examples.lowlevel;
import kafka.api.FetchRequest;
import kafka.api.FetchRequestBuilder;
impo
- nodejs学习api
ronin47
nodejs api
NodeJS基础 什么是NodeJS
JS是脚本语言,脚本语言都需要一个解析器才能运行。对于写在HTML页面里的JS,浏览器充当了解析器的角色。而对于需要独立运行的JS,NodeJS就是一个解析器。
每一种解析器都是一个运行环境,不但允许JS定义各种数据结构,进行各种计算,还允许JS使用运行环境提供的内置对象和方法做一些事情。例如运行在浏览器中的JS的用途是操作DOM,浏览器就提供了docum
- java-64.寻找第N个丑数
bylijinnan
java
public class UglyNumber {
/**
* 64.查找第N个丑数
具体思路可参考 [url] http://zhedahht.blog.163.com/blog/static/2541117420094245366965/[/url]
*
题目:我们把只包含因子
2、3和5的数称作丑数(Ugly Number)。例如6、8都是丑数,但14
- 二维数组(矩阵)对角线输出
bylijinnan
二维数组
/**
二维数组 对角线输出 两个方向
例如对于数组:
{ 1, 2, 3, 4 },
{ 5, 6, 7, 8 },
{ 9, 10, 11, 12 },
{ 13, 14, 15, 16 },
slash方向输出:
1
5 2
9 6 3
13 10 7 4
14 11 8
15 12
16
backslash输出:
4
3
- [JWFD开源工作流设计]工作流跳跃模式开发关键点(今日更新)
comsci
工作流
既然是做开源软件的,我们的宗旨就是给大家分享设计和代码,那么现在我就用很简单扼要的语言来透露这个跳跃模式的设计原理
大家如果用过JWFD的ARC-自动运行控制器,或者看过代码,应该知道在ARC算法模块中有一个函数叫做SAN(),这个函数就是ARC的核心控制器,要实现跳跃模式,在SAN函数中一定要对LN链表数据结构进行操作,首先写一段代码,把
- redis常见使用
cuityang
redis常见使用
redis 通常被认为是一个数据结构服务器,主要是因为其有着丰富的数据结构 strings、map、 list、sets、 sorted sets
引入jar包 jedis-2.1.0.jar (本文下方提供下载)
package redistest;
import redis.clients.jedis.Jedis;
public class Listtest
- 配置多个redis
dalan_123
redis
配置多个redis客户端
<?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi=&quo
- attrib命令
dcj3sjt126com
attr
attrib指令用于修改文件的属性.文件的常见属性有:只读.存档.隐藏和系统.
只读属性是指文件只可以做读的操作.不能对文件进行写的操作.就是文件的写保护.
存档属性是用来标记文件改动的.即在上一次备份后文件有所改动.一些备份软件在备份的时候会只去备份带有存档属性的文件.
- Yii使用公共函数
dcj3sjt126com
yii
在网站项目中,没必要把公用的函数写成一个工具类,有时候面向过程其实更方便。 在入口文件index.php里添加 require_once('protected/function.php'); 即可对其引用,成为公用的函数集合。 function.php如下:
<?php /** * This is the shortcut to D
- linux 系统资源的查看(free、uname、uptime、netstat)
eksliang
netstatlinux unamelinux uptimelinux free
linux 系统资源的查看
转载请出自出处:http://eksliang.iteye.com/blog/2167081
http://eksliang.iteye.com 一、free查看内存的使用情况
语法如下:
free [-b][-k][-m][-g] [-t]
参数含义
-b:直接输入free时,显示的单位是kb我们可以使用b(bytes),m
- JAVA的位操作符
greemranqq
位运算JAVA位移<<>>>
最近几种进制,加上各种位操作符,发现都比较模糊,不能完全掌握,这里就再熟悉熟悉。
1.按位操作符 :
按位操作符是用来操作基本数据类型中的单个bit,即二进制位,会对两个参数执行布尔代数运算,获得结果。
与(&)运算:
1&1 = 1, 1&0 = 0, 0&0 &
- Web前段学习网站
ihuning
Web
Web前段学习网站
菜鸟学习:http://www.w3cschool.cc/
JQuery中文网:http://www.jquerycn.cn/
内存溢出:http://outofmemory.cn/#csdn.blog
http://www.icoolxue.com/
http://www.jikexue
- 强强联合:FluxBB 作者加盟 Flarum
justjavac
r
原文:FluxBB Joins Forces With Flarum作者:Toby Zerner译文:强强联合:FluxBB 作者加盟 Flarum译者:justjavac
FluxBB 是一个快速、轻量级论坛软件,它的开发者是一名德国的 PHP 天才 Franz Liedke。FluxBB 的下一个版本(2.0)将被完全重写,并已经开发了一段时间。FluxBB 看起来非常有前途的,
- java统计在线人数(session存储信息的)
macroli
javaWeb
这篇日志是我写的第三次了 前两次都发布失败!郁闷极了!
由于在web开发中常常用到这一部分所以在此记录一下,呵呵,就到备忘录了!
我对于登录信息时使用session存储的,所以我这里是通过实现HttpSessionAttributeListener这个接口完成的。
1、实现接口类,在web.xml文件中配置监听类,从而可以使该类完成其工作。
public class Ses
- bootstrp carousel初体验 快速构建图片播放
qiaolevip
每天进步一点点学习永无止境bootstrap纵观千象
img{
border: 1px solid white;
box-shadow: 2px 2px 12px #333;
_width: expression(this.width > 600 ? "600px" : this.width + "px");
_height: expression(this.width &
- SparkSQL读取HBase数据,通过自定义外部数据源
superlxw1234
sparksparksqlsparksql读取hbasesparksql外部数据源
关键字:SparkSQL读取HBase、SparkSQL自定义外部数据源
前面文章介绍了SparSQL通过Hive操作HBase表。
SparkSQL从1.2开始支持自定义外部数据源(External DataSource),这样就可以通过API接口来实现自己的外部数据源。这里基于Spark1.4.0,简单介绍SparkSQL自定义外部数据源,访
- Spring Boot 1.3.0.M1发布
wiselyman
spring boot
Spring Boot 1.3.0.M1于6.12日发布,现在可以从Spring milestone repository下载。这个版本是基于Spring Framework 4.2.0.RC1,并在Spring Boot 1.2之上提供了大量的新特性improvements and new features。主要包含以下:
1.提供一个新的sprin