- Meta技术滥用背后的道德危机
XianxinMao
人工智能
标题:Meta技术滥用背后的道德危机文章信息摘要:Meta内部存在技术滥用和道德模糊的深层次问题,员工可能通过AI作弊掩盖能力不足,反映了公司文化中的压力与竞争。Meta的“有害内容检测”算法虽技术精确,却意外将公司使命标记为“有害”,揭示了内部逻辑的矛盾。大公司中,创新和真相常被公司利益和官僚主义压制,程序员的理想主义与现实文化冲突,妥协有时不可避免。尽管如此,程序员应保持对技术的热爱,尤其是使
- 算法【分组背包】
还有糕手
算法动态规划
分组背包是指多个物品分组,每组只能取1件。每一组的物品都可能性展开就可以了。注意时间复杂度不会升阶,O(物品数量*背包容量)。下面通过题目加深理解。题目一测试链接:通天之分组背包-洛谷分析:这道题是分组背包的模板,对每个分组进行可能性的展开即不取这个分组和取这个分组的每一个能取的物品。下面代码采用记忆化搜索,严格位置依赖和空间压缩的解法不再赘述。代码如下。#include#includeusing
- 【学术会议征稿-第二届生成式人工智能与信息安全学术会议(GAIIS 2025)】人工智能与信息安全的魅力
禁默
学术会议人工智能
重要信息时间:2025年2月21日-23日地点:中国杭州官网:http://www.ic-gaiis.org简介2025年第二届生成式人工智能与信息安全将于2025年2月21日-23日在中国杭州举行。主要围绕“生成式人工智能与信息安全”的最新研究展开,紧密聚焦AI的热点和难点问题,深入剖析信息安全核心技术。生成式人工智能与信息安全的关系主要体现在以下几个方面:数据安全:生成式人工智能通常需要大量的
- Codeforces Round 130 (Div. 2) E. Blood Cousins(LCA+DFS序+二分)【2100】
Auto114514
ACM—树深度优先算法图论
题目链接https://codeforces.com/contest/208/problem/E思路此题有两个要点:第一,快速找到节点uuu的ppp级祖先。第二,在以节点uuu为根的子树中找到与节点uuu深度相同的节点的个数。对于第一点,我们可以使用LCA算法在树上倍增,实现快速查询。对于第二点,我们可以按照深度,将所有节点的DFS序全部存储到vector中,因为DFS序的单调性,直接二分查找即可
- 严恭敏老师PSINS工具箱学习笔记-1
嘀嗒zxy
惯导学习笔记matlab
PSINS工具箱学习与使用刚开始入门惯性导航算法,看了一些书但实践出了一些问题,经推荐了解到西工大严恭敏老师的PSINS工具箱很适合自学,就在网上找了一些相关资料,很全。网址:http://www.psins.org.cn/syb站介绍:https://www.bilibili.com/video/BV1R54y1E7ut/?vd_source=6ce8821b81ac808150f82236f5
- 《解锁AI黑科技:数据分类聚类与可视化》
人工智能深度学习数据挖掘
在当今数字化时代,数据如潮水般涌来,如何从海量数据中提取有价值的信息,成为了众多领域面临的关键挑战。人工智能(AI)技术的崛起,为解决这一难题提供了强大的工具。其中,能够实现数据分类与聚类,并以可视化形式展现的AI技术,正逐渐成为各行业数据分析和决策的核心力量。数据分类与聚类:AI的核心技能数据分类是将数据划分到预先定义好的类别中,就像把图书馆里的书籍按照不同学科分类摆放,方便读者查找。比如在垃圾
- 相机-雷达联合标定direct_visual_lidar_calibration开源算法编译踩坑记录
HyperZhu
ROSUbuntu算法相机-雷达联合标定
基于场景的相机-雷达联合标定编译记录direct_visual_lidar_calibration编译1.本机环境Ubuntu18.04+Melodic相关依赖版本:Cmake-3.18.0gcc-8.4.0pcl-1.13.02.相关依赖#Installdependenciessudoaptinstalllibomp-devlibboost-all-devlibglm-devlibglfw3-d
- 大模型开发流程及项目实战
辣椒种子
机器学习人工智能
一、大模型开发整理流程1.1、什么是大模型开发我们将开发以大语言模型为功能核心、通过大语言模型的强大理解能力和生成能力、结合特殊的数据或业务逻辑来提供独特功能的应用称为大模型开发。开发大模型相关应用,其技术核心点虽然在大语言模型上,但一般通过调用API或开源模型来实现核心的理解与生成,通过PromptEnginnering来实现大语言模型的控制,因此,虽然大模型是深度学习领域的集大成之作,大模型开
- PSINS中19维组合导航模块sinsgps详解(滤波部分)
十八与她
PSINS工具箱基本原理与应用人工智能大数据算法惯导组合导航
PSINS中19维组合导航模块sinsgps详解滤波部分滤波部分fork=1:nn:len-nn+1k1=k+nn-1;wvm=imu(k:k1,1:6);t=imu(k1,end);ins=insupdate(ins,wvm);上述代码先进行的是惯导算法更新2.kf.Phikk_1=kffk(ins);为创建卡尔曼滤波的状态转移矩阵3.kf=kfupdate(kf);卡尔曼滤波的时间更新4.[k
- 园区智能化系统实现管理与服务的智能化转型与创新进阶
快鲸智慧楼宇管理系统
其他
内容概要园区智能化系统的出现,标志着管理与服务向智能化转型的重要一步。这一系统不仅仅是一个技术解决方案,更是一个全面提升园区运营效率与安全性的独特工具。通过集成大数据分析、物联网和人工智能,园区智能化系统能够为各类园区如工业园、产业园、物流园、写字楼与公寓等提供切实可行的解决方案。“智能化管理不仅是未来的发展趋势,更是提升竞争力的必要手段。”在资产管理方面,智能化系统能够实时监控并优化资源的配置,
- 汽车蓝牙钥匙定位仿真小程序
程序员石磊
基于深度学习的室内定位室内定位蓝牙钥匙蓝牙钥匙定位
此需求来自于粉丝的真实需求,假期没事,牛刀小试。一、项目背景如今,智能车钥匙和移动端定位技术已经相当普及。为了探索蓝牙Beacon在短距离定位场景下的可行性,我们搭建了一个简易原型:利用UniApp在移动端采集蓝牙信标的RSSI(信号强度),通过三边定位算法估算钥匙在车内或车周围的坐标,并使用FastAPI+Redis实现数据存储与可视化接口,最后在Leaflet地图中模拟车辆俯视效果,实时展示定
- DeepSeek R1本地化部署与联网功能实战指南:从零搭建智能对话系统
Coderabo
pythonDeepSeekR1
前言在人工智能技术快速发展的今天,如何将先进的对话模型DeepSeekR1部署到本地环境并赋予其联网能力,成为许多开发者和企业关注的重点。本文将深入讲解完整的本地化部署流程,并通过实例代码演示如何为模型添加实时网络访问功能。一、环境准备与基础架构1.1硬件需求推荐配置:NVIDIAGPU(RTX3090或更高)+32GB内存+50GB存储空间最低配置:CPU(支持AVX2指令集)+16GB内存+3
- Meta首席科学家Yann LeCun预言:5年内AI架构将颠覆,当前大模型的4大核心缺陷
机器小乙
人工智能
✨引言:一场颠覆AI行业的预言在2025冬季达沃斯“技术辩论”现场,Meta首席AI科学家、图灵奖得主杨立昆(YannLeCun)抛出一个震撼观点:“当前的大语言模型(LLM)范式将在3-5年内被淘汰。”这位深度学习先驱的论断,不仅直指ChatGPT等明星产品的技术天花板,更揭示了下一代AI进化的核心路径——构建理解物理世界的“世界模型”(WorldModel)。作为Meta人工智能实验室负责人,
- AI编程风潮下的生产力革命:从 Copilot 到 Trae
机器小乙
AI编程
AI编程风潮下的生产力革命:从Copilot到Trae前言在人工智能飞速发展的背景下,“AI编程”已经不再是概念炒作,而逐渐成为真实可落地的开发模式。从最初的GitHubCopilot到如今字节跳动的Trae,以及各种聚焦不同场景的AI编程产品如Cursor、Bolt.new、ReplitGhostwriter等,都在加速软件研发流程。本文将结合一些常见使用场景,并通过简短代码示例,让你对AI编程
- 算法篇-炼气期-STL常用函数与数据结构(上篇)
Starry-Walker
算法修炼篇算法c++数据结构stl
前言(双手合十,周身泛起淡淡的代码灵光)诸位道友且慢划走!今天我们不聊金丹元婴那些唬人的大神通,来点实在的——本座夜观天相,发现菜鸟修仙者十有八九不是被红黑二叉树压断灵根,就是在动态规划的心魔劫里走火入魔。但你们可知?只要炼化这枚名为STL的上古储物戒,就能让键盘自动结出算法法印,从此在力扣秘境横着走!(突然压低声音)上个月本座亲眼见证,某个连冒泡排序都要掐诀半柱香的萌新,靠着STL三件套竟在Co
- 【小白学AI系列】NLP 核心知识点(五)Transformer介绍
Blankspace空白
人工智能自然语言处理transformer
TransformerTransformer是一种基于自注意力机制(Self-AttentionMechanism)的深度学习模型,首次由Vaswani等人于2017年在论文《AttentionisAllYouNeed》中提出。与RNN和LSTM不同,Transformer不需要依靠序列顺序进行递归,而是通过全局注意力机制一次性处理整个输入序列,从而具备了更高的计算效率和更强的并行化能力。Tran
- 昆虫机器人:从仿生设计到未来应用
机器小乙
机器人
目录引言:从科幻到现实的启示仿生昆虫机器人:技术突破与功能解析应用场景:农业与灾后救援的革新技术难点:微型机器人研发的挑战未来趋势:智能化与群体协作的潜力总结:昆虫机器人技术的广阔前景1.引言:从科幻到现实的启示还记得阿西莫夫的《奇幻之旅》吗?科学家通过微型潜艇进入人体进行探险,这种场景曾是科幻迷的梦想。如今,随着人工智能和仿生设计的发展,这些奇思妙想正在逐步成为现实。最近,《科学机器人》期刊的一
- 探讨实时操作系统(RTOS)在嵌入式设备中的调度机制与效能优化
借口
热点资讯
博客主页:借口的CSDN主页⏩文章专栏:《热点资讯》探讨实时操作系统(RTOS)在嵌入式设备中的调度机制与效能优化探讨实时操作系统(RTOS)在嵌入式设备中的调度机制与效能优化探讨实时操作系统(RTOS)在嵌入式设备中的调度机制与效能优化引言实时操作系统概述定义应用场景调度机制分类常见算法死锁预防效能优化减少上下文切换开销内存管理功耗控制成功案例分析自动驾驶车辆智能家居面临的问题及解决方案系统复杂
- python 加密与解密
mysouil
算法python算法
python加密与解密具体介绍python的加密与解密算法例如:RSA算法文章目录python加密与解密前言一、对称加密1、用途和特点:2、AES加密实现2.1加密2.2解密2.3测试二、非对称加密1、用途和特点:2、RSA加密实现2.1密钥生成2.2加密2.3解密2.4输入输出到文件2.5测试三、摘要算法(哈希算法)1、用途和特点:2、实现2.1MD5加密2.2SHA1加密2.3SHA224加密
- 【AI人工智能】DeepSeek R1:你需要知道的一切
大名顶顶
人工智能人工智能AIDeepSeek程序员计算机编程开源
我们将在本博客中介绍的关于DeepSeekR1的所有你需要知道的一切内容,请坚持认真读完,必有收获:DeepSeekR1简要概述主要特点与能力开源与可访问性模型架构强化学习训练变体与精简模型使用案例与应用从专有模型迁移到开源模型1.DeepSeekR1简要概述大语言模型(LLM)研究领域正在迅速发展,每一个新模型都在推动机器能力的边界。DeepSeekR1是由DeepSeek于2025年1月20日
- 对线性回归的补充——正规方程法
梦醒沉醉
数学基础线性回归机器学习
目录1.引言2.单变量线性回归的解析解3.多变量线性回归的解析解参考1.引言 在单变量线性回归和多变量线性回归中,参数的更新都使用了梯度下降算法进行迭代,但是线性回归的参数最优值可以直接得到解析解。2.单变量线性回归的解析解 模型:f(x)=wx+b\Largef(x)=wx+bf(x)=wx+b 优化目标:(w∗,b∗)=arg minw∗,b∗∑i=1m[yi−f(xi)]2=arg
- 【码道初阶】国服ad两种殊途同归的贪心算法详解Leetcode452弓箭射气球问题(与Leetcode435十分相似)
宇智波牢大114514
码道初阶贪心算法算法leetcodec++
用最少箭数引爆气球:贪心策略详解引言在解决LeetCode的「452.用最少数量的箭引爆气球」问题时,我们需要在保证射爆所有气球的前提下,找到最少的弓箭数量。本文将结合具体代码,深入解析该问题的贪心解法,用两种不同的循环写法来达成目的并揭示其与经典区间问题(Leetcode435.区间重叠问题)的异同。一、问题描述给定气球区间的数组points,其中每个区间表示气球的水平直径范围。弓箭可以从任意x
- 机器学习强基计划7-6:图文详解层次聚类AGNES算法(附Python实现)_agnes聚类算法python代码
软件开发Java
2024年程序员学习机器学习算法聚类
先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!因此收集整理了一份《2024年最新Python全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课
- Python中random模块
武当豆豆
Python语法python
一、概要random模块是python标准库中用于生成伪随机数的模块。伪随机数是以随机种子和算法得到的,随机种子和算法确定后,生成的随机数序列也确定了。二、常用函数1、random.seed(a)没有设置随机种子a时,默认以时间戳作为随机数,如此一来,每次输出的随机数序列都是不一样的;设置随机种子a后,每次输出的的随机数序列都是一样的。随机种子可设置值为整数、浮点数、字符串和引用等。importr
- 每日一题洛谷P2142 高精度减法C语言(高精度算法)
wen__xvn
洛谷算法算法c语言开发语言
代码中有详细的注释#include#include//bool类型,只会返回true/false#include//strlen测量数组长度;strcpy复制数组//判断A和B大小boolcompare(charA[],charB[]){//测量A和B长度intlen_A=strlen(A);intlen_B=strlen(B);//如果位数不相等可以直接比大小//len_A>len_B会返回tr
- Python实现公钥加解密RSA算法
小团团0
pythonlinux网络
在Python中实现RSA公钥加密算法通常涉及几个步骤:生成密钥对(公钥和私钥)、使用公钥加密数据、以及使用私钥解密数据。Python的cryptography库提供了强大的加密功能,可以方便地实现RSA算法。以下是一个简单的例子,展示了如何使用cryptography库来生成RSA密钥对、加密和解密数据:首先,确保你已经安装了cryptography库。如果没有安装,可以使用pip进行安装:pi
- Day31-【AI思考】-深度学习方法论全解析——科学提升学习效率的终极指南
一个一定要撑住的学习者
#AI深度思考学习方法人工智能
文章目录深度学习方法论全解析——科学提升学习效率的终极指南**一、影子跟读法(Shadowing)——听力突破核武器****二、番茄工作法(Pomodoro)——时间管理手术刀****三、费曼技巧(FeynmanTechnique)——知识内化加速器****四、康奈尔笔记(CornellNotes)——信息处理引擎**效能倍增组合技常见问题解决方案深度学习方法论全解析——科学提升学习效率的终极指南
- kafka自定义分区
程序猿郭鹏飞神奇经历
kafkakafka自定义分区kafkapartition
默认的分区策略1.如果键值为null,并且使用了默认的分区器,那么记录将被随机地发送到主题内各个可用的分区上。分区器使用轮询(RoundRobin)算法将消息均衡地分布到各个分区上。2.如果键不为空,并且使用了默认的分区器,那么Kafka会对键取hash值然后根据散列值把消息映射到特定的分区上。这里的关键之处在于,同一个键总是被映射到同一个分区上,所以在进行映射时,我们会使用主题所有的分区,而不仅
- 【Kafka】Kafka自定义分区器
beautiful_huang
kafkakafka
1.默认的分区策略(1)如果键值为null,并且使用了默认的分区器,那么记录将被随机地发送到主题内各个可用的分区上。分区器使用轮询(RoundRobin)算法将消息均衡地分布到各个分区上。(2)如果键不为空,并且使用了默认的分区器,那么Kafka会对键取hash值然后根据散列值把消息映射到特定的分区上。这里的关键之处在于,同一个键总是被映射到同一个分区上,所以在进行映射时,我们会使用主题所有的分区
- 手眼标定:相机坐标系转换代码
李大脑袋741
人工智能python计算机视觉
在我们机器人与相机的联动使用时,必须进行的操作为手眼标定,将相机的坐标系与机器人的末端坐标系进行转换。首先第1步为拍摄相机照片,并进行标定得到内参:如何matlab进行单目相机标定(全流程)_matlabcamerecalibrator-CSDN博客如何未直接获得外参,还需进行相机的外参求解:matlab进行相机标定求得外参_matlab求解外参函数-CSDN博客求解相机内参外参后,还需将相机拍摄
- 深入浅出Java Annotation(元注解和自定义注解)
Josh_Persistence
Java Annotation元注解自定义注解
一、基本概述
Annontation是Java5开始引入的新特征。中文名称一般叫注解。它提供了一种安全的类似注释的机制,用来将任何的信息或元数据(metadata)与程序元素(类、方法、成员变量等)进行关联。
更通俗的意思是为程序的元素(类、方法、成员变量)加上更直观更明了的说明,这些说明信息是与程序的业务逻辑无关,并且是供指定的工具或
- mysql优化特定类型的查询
annan211
java工作mysql
本节所介绍的查询优化的技巧都是和特定版本相关的,所以对于未来mysql的版本未必适用。
1 优化count查询
对于count这个函数的网上的大部分资料都是错误的或者是理解的都是一知半解的。在做优化之前我们先来看看
真正的count()函数的作用到底是什么。
count()是一个特殊的函数,有两种非常不同的作用,他可以统计某个列值的数量,也可以统计行数。
在统
- MAC下安装多版本JDK和切换几种方式
棋子chessman
jdk
环境:
MAC AIR,OS X 10.10,64位
历史:
过去 Mac 上的 Java 都是由 Apple 自己提供,只支持到 Java 6,并且OS X 10.7 开始系统并不自带(而是可选安装)(原自带的是1.6)。
后来 Apple 加入 OpenJDK 继续支持 Java 6,而 Java 7 将由 Oracle 负责提供。
在终端中输入jav
- javaScript (1)
Array_06
JavaScriptjava浏览器
JavaScript
1、运算符
运算符就是完成操作的一系列符号,它有七类: 赋值运算符(=,+=,-=,*=,/=,%=,<<=,>>=,|=,&=)、算术运算符(+,-,*,/,++,--,%)、比较运算符(>,<,<=,>=,==,===,!=,!==)、逻辑运算符(||,&&,!)、条件运算(?:)、位
- 国内顶级代码分享网站
袁潇含
javajdkoracle.netPHP
现在国内很多开源网站感觉都是为了利益而做的
当然利益是肯定的,否则谁也不会免费的去做网站
&
- Elasticsearch、MongoDB和Hadoop比较
随意而生
mongodbhadoop搜索引擎
IT界在过去几年中出现了一个有趣的现象。很多新的技术出现并立即拥抱了“大数据”。稍微老一点的技术也会将大数据添进自己的特性,避免落大部队太远,我们看到了不同技术之间的边际的模糊化。假如你有诸如Elasticsearch或者Solr这样的搜索引擎,它们存储着JSON文档,MongoDB存着JSON文档,或者一堆JSON文档存放在一个Hadoop集群的HDFS中。你可以使用这三种配
- mac os 系统科研软件总结
张亚雄
mac os
1.1 Microsoft Office for Mac 2011
大客户版,自行搜索。
1.2 Latex (MacTex):
系统环境:https://tug.org/mactex/
&nb
- Maven实战(四)生命周期
AdyZhang
maven
1. 三套生命周期 Maven拥有三套相互独立的生命周期,它们分别为clean,default和site。 每个生命周期包含一些阶段,这些阶段是有顺序的,并且后面的阶段依赖于前面的阶段,用户和Maven最直接的交互方式就是调用这些生命周期阶段。 以clean生命周期为例,它包含的阶段有pre-clean, clean 和 post
- Linux下Jenkins迁移
aijuans
Jenkins
1. 将Jenkins程序目录copy过去 源程序在/export/data/tomcatRoot/ofctest-jenkins.jd.com下面 tar -cvzf jenkins.tar.gz ofctest-jenkins.jd.com &
- request.getInputStream()只能获取一次的问题
ayaoxinchao
requestInputstream
问题:在使用HTTP协议实现应用间接口通信时,服务端读取客户端请求过来的数据,会用到request.getInputStream(),第一次读取的时候可以读取到数据,但是接下来的读取操作都读取不到数据
原因: 1. 一个InputStream对象在被读取完成后,将无法被再次读取,始终返回-1; 2. InputStream并没有实现reset方法(可以重
- 数据库SQL优化大总结之 百万级数据库优化方案
BigBird2012
SQL优化
网上关于SQL优化的教程很多,但是比较杂乱。近日有空整理了一下,写出来跟大家分享一下,其中有错误和不足的地方,还请大家纠正补充。
这篇文章我花费了大量的时间查找资料、修改、排版,希望大家阅读之后,感觉好的话推荐给更多的人,让更多的人看到、纠正以及补充。
1.对查询进行优化,要尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
2.应尽量避免在 where
- jsonObject的使用
bijian1013
javajson
在项目中难免会用java处理json格式的数据,因此封装了一个JSONUtil工具类。
JSONUtil.java
package com.bijian.json.study;
import java.util.ArrayList;
import java.util.Date;
import java.util.HashMap;
- [Zookeeper学习笔记之六]Zookeeper源代码分析之Zookeeper.WatchRegistration
bit1129
zookeeper
Zookeeper类是Zookeeper提供给用户访问Zookeeper service的主要API,它包含了如下几个内部类
首先分析它的内部类,从WatchRegistration开始,为指定的znode path注册一个Watcher,
/**
* Register a watcher for a particular p
- 【Scala十三】Scala核心七:部分应用函数
bit1129
scala
何为部分应用函数?
Partially applied function: A function that’s used in an expression and that misses some of its arguments.For instance, if function f has type Int => Int => Int, then f and f(1) are p
- Tomcat Error listenerStart 终极大法
ronin47
tomcat
Tomcat报的错太含糊了,什么错都没报出来,只提示了Error listenerStart。为了调试,我们要获得更详细的日志。可以在WEB-INF/classes目录下新建一个文件叫logging.properties,内容如下
Java代码
handlers = org.apache.juli.FileHandler, java.util.logging.ConsoleHa
- 不用加减符号实现加减法
BrokenDreams
实现
今天有群友发了一个问题,要求不用加减符号(包括负号)来实现加减法。
分析一下,先看最简单的情况,假设1+1,按二进制算的话结果是10,可以看到从右往左的第一位变为0,第二位由于进位变为1。
 
- 读《研磨设计模式》-代码笔记-状态模式-State
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
当一个对象的内在状态改变时允许改变其行为,这个对象看起来像是改变了其类
状态模式主要解决的是当控制一个对象状态的条件表达式过于复杂时的情况
把状态的判断逻辑转移到表示不同状态的一系列类中,可以把复杂的判断逻辑简化
如果在
- CUDA程序block和thread超出硬件允许值时的异常
cherishLC
CUDA
调用CUDA的核函数时指定block 和 thread大小,该大小可以是dim3类型的(三维数组),只用一维时可以是usigned int型的。
以下程序验证了当block或thread大小超出硬件允许值时会产生异常!!!GPU根本不会执行运算!!!
所以验证结果的正确性很重要!!!
在VS中创建CUDA项目会有一个模板,里面有更详细的状态验证。
以下程序在K5000GPU上跑的。
- 诡异的超长时间GC问题定位
chenchao051
jvmcmsGChbaseswap
HBase的GC策略采用PawNew+CMS, 这是大众化的配置,ParNew经常会出现停顿时间特别长的情况,有时候甚至长到令人发指的地步,例如请看如下日志:
2012-10-17T05:54:54.293+0800: 739594.224: [GC 739606.508: [ParNew: 996800K->110720K(996800K), 178.8826900 secs] 3700
- maven环境快速搭建
daizj
安装mavne环境配置
一 下载maven
安装maven之前,要先安装jdk及配置JAVA_HOME环境变量。这个安装和配置java环境不用多说。
maven下载地址:http://maven.apache.org/download.html,目前最新的是这个apache-maven-3.2.5-bin.zip,然后解压在任意位置,最好地址中不要带中文字符,这个做java 的都知道,地址中出现中文会出现很多
- PHP网站安全,避免PHP网站受到攻击的方法
dcj3sjt126com
PHP
对于PHP网站安全主要存在这样几种攻击方式:1、命令注入(Command Injection)2、eval注入(Eval Injection)3、客户端脚本攻击(Script Insertion)4、跨网站脚本攻击(Cross Site Scripting, XSS)5、SQL注入攻击(SQL injection)6、跨网站请求伪造攻击(Cross Site Request Forgerie
- yii中给CGridView设置默认的排序根据时间倒序的方法
dcj3sjt126com
GridView
public function searchWithRelated() {
$criteria = new CDbCriteria;
$criteria->together = true; //without th
- Java集合对象和数组对象的转换
dyy_gusi
java集合
在开发中,我们经常需要将集合对象(List,Set)转换为数组对象,或者将数组对象转换为集合对象。Java提供了相互转换的工具,但是我们使用的时候需要注意,不能乱用滥用。
1、数组对象转换为集合对象
最暴力的方式是new一个集合对象,然后遍历数组,依次将数组中的元素放入到新的集合中,但是这样做显然过
- nginx同一主机部署多个应用
geeksun
nginx
近日有一需求,需要在一台主机上用nginx部署2个php应用,分别是wordpress和wiki,探索了半天,终于部署好了,下面把过程记录下来。
1. 在nginx下创建vhosts目录,用以放置vhost文件。
mkdir vhosts
2. 修改nginx.conf的配置, 在http节点增加下面内容设置,用来包含vhosts里的配置文件
#
- ubuntu添加admin权限的用户账号
hongtoushizi
ubuntuuseradd
ubuntu创建账号的方式通常用到两种:useradd 和adduser . 本人尝试了useradd方法,步骤如下:
1:useradd
使用useradd时,如果后面不加任何参数的话,如:sudo useradd sysadm 创建出来的用户将是默认的三无用户:无home directory ,无密码,无系统shell。
顾应该如下操作:
- 第五章 常用Lua开发库2-JSON库、编码转换、字符串处理
jinnianshilongnian
nginxlua
JSON库
在进行数据传输时JSON格式目前应用广泛,因此从Lua对象与JSON字符串之间相互转换是一个非常常见的功能;目前Lua也有几个JSON库,本人用过cjson、dkjson。其中cjson的语法严格(比如unicode \u0020\u7eaf),要求符合规范否则会解析失败(如\u002),而dkjson相对宽松,当然也可以通过修改cjson的源码来完成
- Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
yaerfeng1989
timerquartz定时器
原创整理不易,转载请注明出处:Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
代码下载地址:http://www.zuidaima.com/share/1772648445103104.htm
有两种流行Spring定时器配置:Java的Timer类和OpenSymphony的Quartz。
1.Java Timer定时
首先继承jav
- Linux下df与du两个命令的差别?
pda158
linux
一、df显示文件系统的使用情况,与du比較,就是更全盘化。 最经常使用的就是 df -T,显示文件系统的使用情况并显示文件系统的类型。 举比例如以下: [root@localhost ~]# df -T Filesystem Type &n
- [转]SQLite的工具类 ---- 通过反射把Cursor封装到VO对象
ctfzh
VOandroidsqlite反射Cursor
在写DAO层时,觉得从Cursor里一个一个的取出字段值再装到VO(值对象)里太麻烦了,就写了一个工具类,用到了反射,可以把查询记录的值装到对应的VO里,也可以生成该VO的List。
使用时需要注意:
考虑到Android的性能问题,VO没有使用Setter和Getter,而是直接用public的属性。
表中的字段名需要和VO的属性名一样,要是不一样就得在查询的SQL中
- 该学习笔记用到的Employee表
vipbooks
oraclesql工作
这是我在学习Oracle是用到的Employee表,在该笔记中用到的就是这张表,大家可以用它来学习和练习。
drop table Employee;
-- 员工信息表
create table Employee(
-- 员工编号
EmpNo number(3) primary key,
-- 姓