- DeepSeek与剪映短视频创作指南
meisongqing
人工智能DeepSeek剪映
DeepSeek(深度求索)作为一家专注实现AGI的中国公司,其技术可能涉及AI文本生成、图像处理等领域,结合剪映的智能剪辑功能,可以大幅提升短视频创作效率。以下是结合两者优势的详细创作步骤:一、创意策划阶段AI灵感激发使用DeepSeek的AI文本生成功能,输入关键词(如"美食教程"、"科技科普")获取创意方向生成10-20个标题备选(示例Prompt:"生成10个吸引年轻人的美妆短视频标题")
- Manus联创澄清:我们并未使用MCP技术
耶耶Norsea
网络杂烩人工智能
摘要近日,Manus联创针对外界关于其产品可能涉及“沙盒越狱”的疑问进行了正式回应。公司明确表示并未使用Anthropic的MCP(模型上下文协议)技术,并强调MCP是一个旨在标准化应用程序与大型语言模型(LLM)之间上下文交互的开放标准。此外,Manus联创宣布了开源计划,以增强透明度和社区参与。季逸超也确认他们没有采用MCP技术,进一步澄清了相关质疑。关键词沙盒越狱,MCP技术,开源计划,透明
- 【LLM】从零开始实现 LLaMA3
FOUR_A
LLM人工智能机器学习大模型llama算法
分词器在这里,我们不会实现一个BPE分词器(但AndrejKarpathy有一个非常简洁的实现)。BPE(BytePairEncoding,字节对编码)是一种数据压缩算法,也被用于自然语言处理中的分词方法。它通过逐步将常见的字符或子词组合成更长的词元(tokens),从而有效地表示文本中的词汇。在自然语言处理中的BPE分词器的工作原理如下:初始化:首先,将所有词汇表中的单词分解为单个字符或符号。例
- 【UDS诊断(ClearDiagnosticInformation_0x84服务)测试用例CAPL代码全解析⑦】
车端域控测试工程师
测试用例汽车经验分享CANoe学习
ISO14229-1:2023UDS诊断【ClearDiagnosticInformation_0x84服务】_TestCase07作者:车端域控测试工程师更新日期:2025年03月11日关键词:UDS诊断协议、清除诊断信息服务、ClearDiagnosticInformation_0x84服务、ISO14229-1:2023TC84-007测试用例用例ID测试场景验证要点参考条款预期结果TC84
- 使用LangChain访问个人数据第一章-简介
明志刘明
大模型学习手册langchain
需要学习提示词工程的同学请看面向开发者的提示词工程需要学习ChatGPT的同学请查看搭建基于ChatGPT的问答系统需要学习LangChian开发的同学请查看基于LangChain开发应用程序正文在大数据时代,数据价值逐渐凸显,打造定制化、个性化服务,个人数据尤为重要。要开发一个具备较强服务能力、能够充分展现个性化智能的应用程序,大模型与个人数据的对齐是一个重要步骤。作为针对大模型开发应运而生的框
- 使用LangChain访问个人数据第八章-总结
明志刘明
大模型学习手册langchain人工智能
需要学习提示词工程的同学请看面向开发者的提示词工程需要学习ChatGPT的同学请查看搭建基于ChatGPT的问答系统需要学习LangChian开发的同学请查看基于LangChain开发应用程序本部分前几个章节请查看使用LangChain访问个人数据第一章-简介使用LangChain访问个人数据第二章-文档加载使用LangChain访问个人数据第三章-文档分割使用LangChain访问个人数据第四章
- 基于 LangChain 开发应用程序第一章-简介
明志刘明
大模型学习手册langchain人工智能
需要学习提示词工程的同学请看面向开发者的提示词工程需要学习ChatGPT的同学请查看搭建基于ChatGPT的问答系统本部分章节目录如下:基于LangChain开发应用程序第一章-简介基于LangChain开发应用程序第二章-提示和输出基于LangChain开发应用程序第三章-储存基于LangChain开发应用程序第四章-模型链基于LangChain开发应用程序第五章-基于文档的问答基于LangCh
- 使用Java对接StockTV印度股票数据源API实战指南
java爬虫
关键词:JavaAPI开发、SpringBoot、WebSocket、ApacheHttpClient一、项目概述本指南将使用Java实现StockTV金融数据API的完整对接方案,包含以下核心模块:✅RESTAPI客户端:支持同步/异步调用✅WebSocket实时订阅:基于SpringWebSocket✅企业级特性:连接池管理、熔断降级✅生产就绪:完整的异常处理和监控二、环境准备1.技术栈要求J
- 警惕AI神话破灭:深度解析大模型缺陷与禁用场景指南
领码科技
AI应用IT职场大模型缺陷AI工具风险伦理挑战应用场景限制可信AI
摘要当前AI大模型虽展现强大能力,但其本质缺陷可能引发系统性风险。本文从认知鸿沟、数据困境、伦理雷区、技术瓶颈四大维度剖析大模型局限性,揭示医疗诊断、法律决策等8类禁用场景,提出可信AI建设框架与用户防护策略。通过理论分析与实操案例结合,为规避AI工具风险提供系统性解决方案。关键词:大模型缺陷、AI工具风险、伦理挑战、应用场景限制、可信AI一、认知鸿沟:无法企及的人类智慧1.1创造性思维的致命短板
- 从零开始学习黑客技术,看这一篇就够了
网络安全-旭师兄
学习web安全python密码学网络安全
基于入门网络安全/黑客打造的:黑客&网络安全入门&进阶学习资源包黑客,对于很多人来说,是一个神秘的代名词,加之影视作品夸张的艺术表现,使得黑客这个本来只专注于技术的群体,散发出亦正亦邪的神秘色彩。黑客源自英文hacker一词,最初曾指热心于计算机技术、水平高超的电脑高手,尤其是程序设计人员,逐渐区分为白帽、灰帽、黑帽等。其中,白帽黑客被称为道德黑客。他们不会非法入侵用户网络,而是通过一系列测试检查
- 大语言模型原理基础与前沿 双层路由多模态融合、多任务学习和模块化架构
AI智能涌现深度研究
AI大语言模型和知识图谱融合Python入门实战DeepSeekR1&大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理基础与前沿:双层路由多模态融合、多任务学习和模块化架构关键词:大语言模型、双层路由、多模态融合、多任务学习、模块化架构、神经网络、自然语言处理1.背景介绍大语言模型(LargeLanguageModels,LLMs)已经成为人工智能和自然语言处理领域的重要研究方向。随着GPT-3、BERT等模型的出现,大语言模型在各种任务中展现出了惊人的性能。然而,随着模型规模的不断扩大和应用场景的
- 领域大模型之微调技术和最佳实践
程序员莫玛
人工智能深度学习语言模型金融
BERT和GPT-3等语言模型针对语言任务进行了预训练。微调使它们适应特定领域,如营销、医疗保健、金融。在本指南中,您将了解LLM架构、微调过程以及如何为NLP任务微调自己的预训练模型。-介绍-大型语言模型(LLM)的特别之处可以概括为两个关键词——大型和通用。“大”是指它们训练的海量数据集及其参数的大小,即模型在训练过程中学习的记忆和知识;“通用”意味着他们具有广泛的语言任务能力。更明确地说,L
- JSON数据解析实战:从嵌套结构到结构化表格
亿牛云爬虫专家
代理IP爬虫代理pythonjson数据解析嵌套结构结构化表格GoogleScholar学术文献爬虫代理
在信息爆炸的时代,如何从杂乱无章的数据中还原出精准的知识图谱,是数据侦探们常常面临的挑战。本文以GoogleScholar为目标,深入解析嵌套JSON数据,从海量文献信息中提取关键词、作者、期刊等内容。最终,我们不仅将数据转换成结构化表格,还通过Graphviz制作出技术关系图谱,揭示文献间的隐秘联系。关键数据分析在本次调研中,我们的核心目标是获取GoogleScholar上的学术文献信息。为此,
- 句子改写器在线转换的原创性提升策略
hjehheje
算法人工智能python
在文本处理领域,"句子改写器在线转换"的原创性提升并非单纯依赖工具升级,而是需要融合算法优化、人工干预与策略设计的系统工程。以下从技术底层到应用层拆解核心方法,辅以实验数据验证其可行性:一、语义拓扑重构技术(SemanticTopologyReconstruction)原理突破传统同义词替换仅影响表层词汇(LexicalLevel),而STR技术通过依存句法分析,构建句子的语义网络拓扑图,对主谓宾
- 程序员如何利用 AI 辅助编程,提升效率并摆脱 996
fxrz12
AI人工智能
——从AI编程助手到高效提示词技巧在过去,程序员遇到问题时,会优先选择Google、StackOverflow、必应、百度等搜索引擎。然而,AI的崛起正在改变这一模式。越来越多的IT人开始直接向AI询问问题,而不再只是搜索代码片段。如何有效地向AI提问,写出精准的Prompt(提示词),决定了AI能否真正成为你的高效助手。本文将探讨如何利用AI提升编程效率,并深入讲解如何向AI提问,以便获得最佳答
- 程序员提示词使用指南:从入门到精通的Prompt技巧
shandianfk_com
ChatGPTAIprompt人工智能深度学习
在当今的编程世界里,编写高效、简洁的代码一直是每个程序员追求的目标。但随着AI技术的发展,程序员们有了新的“武器”——Prompt提示词。Prompt,即提示词,是指在编程过程中,给AI模型提供的指令或问题,以便获得所需的代码或答案。今天,我们就来详细探讨一下如何从入门到精通地使用Prompt提示词,帮助你在编程过程中事半功倍。首先,我们来了解一下Prompt的基础知识。一、什么是Prompt提示
- LLM论文笔记 20: How to think step-by-step: A mechanistic understanding of chain-of-thought reasoning
Zhouqi_Hua
大模型论文阅读人工智能chatgpt论文阅读机器学习深度学习语言模型
Arxiv日期:2024.5.16机构:IIT关键词CoT本质LLM推理本质核心结论1.CoT推理的功能组件尽管不同阶段的推理任务具有不同的推理需求,模型内部的功能组件几乎是相同的(共享而非独享)不同的神经算法实际上是由类似归纳头(inductionheads)等机制组合而成2.注意力机制中的信息流动attentionheads在不同的模型层之间传递信息,特别是当它们涉及到本体论相关(ontolo
- 《ChatGPT Prompt Engineering for Developers》课程-提示词原则
evil-tomato
LLMchatgpt人工智能pythonai
编写Prompt的原则本章的主要内容为编写Prompt的原则,在本章中,我们将给出两个编写Prompt的原则与一些相关的策略,你将练习基于这两个原则来编写有效的Prompt,从而便捷而有效地使用LLM。一、环境配置本教程使用OpenAI所开放的ChatGPTAPI,因此你需要首先拥有一个ChatGPT的API_KEY(也可以直接访问官方网址在线测试),然后需要安装openai的第三方库首先需要安装
- AI Prompt 提示词工程入门指南:新手小白快速上手
机器学习司猫白
人工智能prompt
近年来,人工智能(AI)发展迅猛,特别是大语言模型(LLMs)(如ChatGPT、Claude、Gemini、Llama等)的广泛应用,让人们可以用自然语言与AI进行互动。而提示词工程(PromptEngineering),即如何设计有效的提示词,已经成为一项重要技能。本篇博客专为新手小白打造,帮助你快速掌握Prompt工程的基础,学会如何撰写高质量的提示词,让AI更精准地理解你的需求,并产出最优
- AI提示词(Prompt)的理解和学习指南
时光不负追梦人
人工智能prompt
AI提示词(Prompt)的理解和学习指南一、什么是AI提示词?AI提示词(Prompt)是用户输入给人工智能模型的指令或问题,用于引导模型生成特定类型的回答或内容。它如同与AI沟通的“钥匙”,设计得当的提示词能显著提升输出质量。二、提示词的核心要素明确目标模糊示例:“写一篇关于环保的文章。”优化示例:“以‘垃圾分类’为主题,撰写一篇面向社区居民的科普文章,要求包含实施步骤和常见误区,字数约800
- 清华、北大DeepSeek使用手册:8本,698页大合集
2501_90850576
人工智能pdf
链接:https://pan.quark.cn/s/79b8b14e2c56以前看了很多教程,都感觉特别花哨,没啥干货,大部分就是把GPT的说明书稍微改改,就拿来用在DeepSeek上了,没啥用。但清华和北大这个手册完全不一样!它先是给你讲清楚原理,然后手把手教你怎么科学地使用。它不只是告诉你怎么提问,还会告诉你为啥要这么问,这不就是教你怎么掌握提示词的底层逻辑嘛。
- 数据分析在宇宙观测中的重要性
AI天才研究院
计算ChatGPTDeepSeekR1&大数据AI人工智能大模型javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
数据分析在宇宙观测中的重要性关键词:数据分析、宇宙观测、数据预处理、数据挖掘、数据可视化摘要:本文将探讨数据分析在宇宙观测中的重要性,从数据分析在宇宙观测中的应用背景、重要性、面临的挑战与机遇以及未来发展趋势等方面进行深入分析,旨在为读者提供一个全面而详细的了解。引言第1章:分析数据与宇宙观测的关联1.1.1数据分析在宇宙观测中的应用背景宇宙观测是研究宇宙的结构、演化、性质以及各种物理现象的科学。
- 文本向量化-词嵌入方法系列1:静态词嵌入(Word2Vec+GloVe)
学习ml的小菜鸡
nlp自然语言处理word2vec
文本分散化表示指将语言表示成低维、稠密、连续的向量,分为静态嵌入和动态嵌入两种方式。静态词嵌入有Word2Vec,Sen2Vec,Doc2Vec,以及GloVe模型;而动态词嵌入有ELMO,Transformer,GPT,Bert和XLNet等等。本文主要对静态词嵌入方法做一个整体介绍,动态词嵌入会在系列2中更新。目录1.Word2Vec1.1CBOW1.2Skip-gram1.3Sen2Vec+
- 第N4周:NLP中的文本嵌入
OreoCC
自然语言处理人工智能
本人往期文章可查阅:深度学习总结词嵌入是一种用于自然语言处理(NLP)的技术,用于将单词表示为数字,以便计算机可以处理它们。通俗的讲就是,一种把文本转为数值输入到计算机中的方法。之前文章中提到的将文本转换为字典序列、one-hot编码就是最早期的词嵌入方法。Embedding和EmbeddingBag则是PyTorch中的用来处理文本数据中词嵌入(wordembedding)的工具,它们将离散的词
- python爬虫项目(十二):爬取各大音乐平台排行榜并分析音乐类型趋势
人工智能_SYBH
爬虫试读2025年爬虫百篇实战宝典:从入门到精通python爬虫开发语言python爬虫项目python爬虫
目录1.项目简介2.工具与技术3.爬取音乐平台排行榜数据3.1使用requests和BeautifulSoup爬取网易云音乐排行榜3.2爬取QQ音乐排行榜4.数据处理4.1合并数据5.分析音乐类型趋势5.1使用关键词匹配类型6.数据可视化6.1绘制音乐类型分布图6.2绘制时间趋势图7.总结爬取各大音乐平台排行榜并分析音乐类型趋势是一个有趣且有意义的项目。我们可以通过以下步骤来实现:1.项目简介本项
- 技术人实测 | 如何用AI工具2分钟突破知网AIGC检测线
LL06210721
人工智能AIGC
最近在GitHub发现个有意思的本地化算法工具,其核心是通过对抗式语义重组技术重构文本逻辑链。测试时发现:将GPT生成的论文导入后,系统会保留原始参考文献格式,同时用学术同义词替换引擎重写表达结构。实测数据:某985实验室的AI生成稿经处理,知网AIGC率从38%→9.7%(检测截图已脱敏),维普重复率从24%→8.3%。工具最实用的三个细节:保留公式编号和图表位置不变支持LaTeX源码级修改追踪
- GPT-4o 随机性揭秘:可控与不可控的奥秘
真智AI
java前端人工智能机器学习语言模型chatgpt
GPT-4o中可避免与不可避免的随机性探讨GPT-4o生成随机性的来源,从已知且可控的因素到不透明且不可控的机制。GPT-4o结果中的随机性:无可避免的现实毫无疑问,GPT-4o的输出存在随机性。毕竟,模型在选择每个token时是从概率分布中进行采样的。但我一直没有意识到,这些概率本身并不是完全确定性的。即使在使用相同的提示词、固定的随机种子(seed)以及将温度(temperature)设为0的
- StarUML~时序图效果
Johhny Rade
UML参考
01时序图基本操作对象间调用:Object1Object2对象自调用:Object302表达条件结构与循环结构左侧1:条件结构左侧2:循环结构03时序图操作分组(顺序,循环等)一组相关的顺序操作,关键词seq相关的循环操作,关键词loop其它…04时序图示例
- [C/C++]滑动窗口专题/最小覆盖子串/字符串排列/找到字符串中所有字母异位词/无重复字符的最长子串/串联所有单词的子串
消失男孩
热门面试题
以下内容节选自公众号:labuladong《我写了套框架,把滑动窗口算法变成了默写题》,传送门在最下方参考链接1。我觉得非常牛逼,在此记录,方便复习。1、框架2、LeetCode76:最小覆盖子串3、LeetCode567:字符串排列4、LeetCode438:找到字符串中所有字母异位词5、LeetCode3:无重复字符的最长子串6、LeetCode30:串联所有单词的子串1、框架以下框架中,遇到
- 专题二——滑动窗口
有时间要学习
算法基础算法
目录一长度最小的子数组二无重复字符的最长字符串三最大连续1的个数Ⅲ四将x减到0的最小操作数五水果成篮六找到字符串中所有字母异位词七串联所有单词的子串八最小覆盖子串原理:定义两个指针(下标)来维护所指向的区间始终是符合题目要求,大致分为三步:1进窗口:用一个指针来进行遍历搜索使指针区间符合要求2更新值:该区间符合要求后记录存储数值(可以是任意区间)3出窗口:另一个指针开始进行向后走继续查找符合要求的
- ASM系列六 利用TreeApi 添加和移除类成员
lijingyao8206
jvm动态代理ASM字节码技术TreeAPI
同生成的做法一样,添加和移除类成员只要去修改fields和methods中的元素即可。这里我们拿一个简单的类做例子,下面这个Task类,我们来移除isNeedRemove方法,并且添加一个int 类型的addedField属性。
package asm.core;
/**
* Created by yunshen.ljy on 2015/6/
- Springmvc-权限设计
bee1314
springWebjsp
万丈高楼平地起。
权限管理对于管理系统而言已经是标配中的标配了吧,对于我等俗人更是不能免俗。同时就目前的项目状况而言,我们还不需要那么高大上的开源的解决方案,如Spring Security,Shiro。小伙伴一致决定我们还是从基本的功能迭代起来吧。
目标:
1.实现权限的管理(CRUD)
2.实现部门管理 (CRUD)
3.实现人员的管理 (CRUD)
4.实现部门和权限
- 算法竞赛入门经典(第二版)第2章习题
CrazyMizzz
c算法
2.4.1 输出技巧
#include <stdio.h>
int
main()
{
int i, n;
scanf("%d", &n);
for (i = 1; i <= n; i++)
printf("%d\n", i);
return 0;
}
习题2-2 水仙花数(daffodil
- struts2中jsp自动跳转到Action
麦田的设计者
jspwebxmlstruts2自动跳转
1、在struts2的开发中,经常需要用户点击网页后就直接跳转到一个Action,执行Action里面的方法,利用mvc分层思想执行相应操作在界面上得到动态数据。毕竟用户不可能在地址栏里输入一个Action(不是专业人士)
2、<jsp:forward page="xxx.action" /> ,这个标签可以实现跳转,page的路径是相对地址,不同与jsp和j
- php 操作webservice实例
IT独行者
PHPwebservice
首先大家要简单了解了何谓webservice,接下来就做两个非常简单的例子,webservice还是逃不开server端与client端。我测试的环境为:apache2.2.11 php5.2.10做这个测试之前,要确认你的php配置文件中已经将soap扩展打开,即extension=php_soap.dll;
OK 现在我们来体验webservice
//server端 serve
- Windows下使用Vagrant安装linux系统
_wy_
windowsvagrant
准备工作:
下载安装 VirtualBox :https://www.virtualbox.org/
下载安装 Vagrant :http://www.vagrantup.com/
下载需要使用的 box :
官方提供的范例:http://files.vagrantup.com/precise32.box
还可以在 http://www.vagrantbox.es/
- 更改linux的文件拥有者及用户组(chown和chgrp)
无量
clinuxchgrpchown
本文(转)
http://blog.163.com/yanenshun@126/blog/static/128388169201203011157308/
http://ydlmlh.iteye.com/blog/1435157
一、基本使用:
使用chown命令可以修改文件或目录所属的用户:
命令
- linux下抓包工具
矮蛋蛋
linux
原文地址:
http://blog.chinaunix.net/uid-23670869-id-2610683.html
tcpdump -nn -vv -X udp port 8888
上面命令是抓取udp包、端口为8888
netstat -tln 命令是用来查看linux的端口使用情况
13 . 列出所有的网络连接
lsof -i
14. 列出所有tcp 网络连接信息
l
- 我觉得mybatis是垃圾!:“每一个用mybatis的男纸,你伤不起”
alafqq
mybatis
最近看了
每一个用mybatis的男纸,你伤不起
原文地址 :http://www.iteye.com/topic/1073938
发表一下个人看法。欢迎大神拍砖;
个人一直使用的是Ibatis框架,公司对其进行过小小的改良;
最近换了公司,要使用新的框架。听说mybatis不错;就对其进行了部分的研究;
发现多了一个mapper层;个人感觉就是个dao;
- 解决java数据交换之谜
百合不是茶
数据交换
交换两个数字的方法有以下三种 ,其中第一种最常用
/*
输出最小的一个数
*/
public class jiaohuan1 {
public static void main(String[] args) {
int a =4;
int b = 3;
if(a<b){
// 第一种交换方式
int tmep =
- 渐变显示
bijian1013
JavaScript
<style type="text/css">
#wxf {
FILTER: progid:DXImageTransform.Microsoft.Gradient(GradientType=0, StartColorStr=#ffffff, EndColorStr=#97FF98);
height: 25px;
}
</style>
- 探索JUnit4扩展:断言语法assertThat
bijian1013
java单元测试assertThat
一.概述
JUnit 设计的目的就是有效地抓住编程人员写代码的意图,然后快速检查他们的代码是否与他们的意图相匹配。 JUnit 发展至今,版本不停的翻新,但是所有版本都一致致力于解决一个问题,那就是如何发现编程人员的代码意图,并且如何使得编程人员更加容易地表达他们的代码意图。JUnit 4.4 也是为了如何能够
- 【Gson三】Gson解析{"data":{"IM":["MSN","QQ","Gtalk"]}}
bit1129
gson
如何把如下简单的JSON字符串反序列化为Java的POJO对象?
{"data":{"IM":["MSN","QQ","Gtalk"]}}
下面的POJO类Model无法完成正确的解析:
import com.google.gson.Gson;
- 【Kafka九】Kafka High Level API vs. Low Level API
bit1129
kafka
1. Kafka提供了两种Consumer API
High Level Consumer API
Low Level Consumer API(Kafka诡异的称之为Simple Consumer API,实际上非常复杂)
在选用哪种Consumer API时,首先要弄清楚这两种API的工作原理,能做什么不能做什么,能做的话怎么做的以及用的时候,有哪些可能的问题
- 在nginx中集成lua脚本:添加自定义Http头,封IP等
ronin47
nginx lua
Lua是一个可以嵌入到Nginx配置文件中的动态脚本语言,从而可以在Nginx请求处理的任何阶段执行各种Lua代码。刚开始我们只是用Lua 把请求路由到后端服务器,但是它对我们架构的作用超出了我们的预期。下面就讲讲我们所做的工作。 强制搜索引擎只索引mixlr.com
Google把子域名当作完全独立的网站,我们不希望爬虫抓取子域名的页面,降低我们的Page rank。
location /{
- java-归并排序
bylijinnan
java
import java.util.Arrays;
public class MergeSort {
public static void main(String[] args) {
int[] a={20,1,3,8,5,9,4,25};
mergeSort(a,0,a.length-1);
System.out.println(Arrays.to
- Netty源码学习-CompositeChannelBuffer
bylijinnan
javanetty
CompositeChannelBuffer体现了Netty的“Transparent Zero Copy”
查看API(
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/buffer/package-summary.html#package_description)
可以看到,所谓“Transparent Zero Copy”是通
- Android中给Activity添加返回键
hotsunshine
Activity
// this need android:minSdkVersion="11"
getActionBar().setDisplayHomeAsUpEnabled(true);
@Override
public boolean onOptionsItemSelected(MenuItem item) {
- 静态页面传参
ctrain
静态
$(document).ready(function () {
var request = {
QueryString :
function (val) {
var uri = window.location.search;
var re = new RegExp("" + val + "=([^&?]*)", &
- Windows中查找某个目录下的所有文件中包含某个字符串的命令
daizj
windows查找某个目录下的所有文件包含某个字符串
findstr可以完成这个工作。
[html]
view plain
copy
>findstr /s /i "string" *.*
上面的命令表示,当前目录以及当前目录的所有子目录下的所有文件中查找"string&qu
- 改善程序代码质量的一些技巧
dcj3sjt126com
编程PHP重构
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。让我们看一些基本的编程技巧: 尽量保持方法简短 尽管很多人都遵
- SharedPreferences对数据的存储
dcj3sjt126com
SharedPreferences简介: &nbs
- linux复习笔记之bash shell (2) bash基础
eksliang
bashbash shell
转载请出自出处:
http://eksliang.iteye.com/blog/2104329
1.影响显示结果的语系变量(locale)
1.1locale这个命令就是查看当前系统支持多少种语系,命令使用如下:
[root@localhost shell]# locale
LANG=en_US.UTF-8
LC_CTYPE="en_US.UTF-8"
- Android零碎知识总结
gqdy365
android
1、CopyOnWriteArrayList add(E) 和remove(int index)都是对新的数组进行修改和新增。所以在多线程操作时不会出现java.util.ConcurrentModificationException错误。
所以最后得出结论:CopyOnWriteArrayList适合使用在读操作远远大于写操作的场景里,比如缓存。发生修改时候做copy,新老版本分离,保证读的高
- HoverTree.Model.ArticleSelect类的作用
hvt
Web.netC#hovertreeasp.net
ArticleSelect类在命名空间HoverTree.Model中可以认为是文章查询条件类,用于存放查询文章时的条件,例如HvtId就是文章的id。HvtIsShow就是文章的显示属性,当为-1是,该条件不产生作用,当为0时,查询不公开显示的文章,当为1时查询公开显示的文章。HvtIsHome则为是否在首页显示。HoverTree系统源码完全开放,开发环境为Visual Studio 2013
- PHP 判断是否使用代理 PHP Proxy Detector
天梯梦
proxy
1. php 类
I found this class looking for something else actually but I remembered I needed some while ago something similar and I never found one. I'm sure it will help a lot of developers who try to
- apache的math库中的回归——regression(翻译)
lvdccyb
Mathapache
这个Math库,虽然不向weka那样专业的ML库,但是用户友好,易用。
多元线性回归,协方差和相关性(皮尔逊和斯皮尔曼),分布测试(假设检验,t,卡方,G),统计。
数学库中还包含,Cholesky,LU,SVD,QR,特征根分解,真不错。
基本覆盖了:线代,统计,矩阵,
最优化理论
曲线拟合
常微分方程
遗传算法(GA),
还有3维的运算。。。
- 基础数据结构和算法十三:Undirected Graphs (2)
sunwinner
Algorithm
Design pattern for graph processing.
Since we consider a large number of graph-processing algorithms, our initial design goal is to decouple our implementations from the graph representation
- 云计算平台最重要的五项技术
sumapp
云计算云平台智城云
云计算平台最重要的五项技术
1、云服务器
云服务器提供简单高效,处理能力可弹性伸缩的计算服务,支持国内领先的云计算技术和大规模分布存储技术,使您的系统更稳定、数据更安全、传输更快速、部署更灵活。
特性
机型丰富
通过高性能服务器虚拟化为云服务器,提供丰富配置类型虚拟机,极大简化数据存储、数据库搭建、web服务器搭建等工作;
仅需要几分钟,根据CP
- 《京东技术解密》有奖试读获奖名单公布
ITeye管理员
活动
ITeye携手博文视点举办的12月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
12月试读活动回顾:
http://webmaster.iteye.com/blog/2164754
本次技术图书试读活动获奖名单及相应作品如下:
一等奖(两名)
Microhardest:http://microhardest.ite