double **two_array_malloc(int m, int n)
{
double **a;
int i, j;
a = (double **)malloc(m * sizeof(double *));
for (i = 0; i < m; i++)
{
a[i] = (double *)malloc(n * sizeof(double));
for (j = 0; j < n; j++)
{
a[i][j] = 0;
}
}
return a;
}
void two_array_clear(double **a, int m)
{
int i;
for (i = 0; i < m; i++)
{
delete[] a[i];
}
delete[] a;
}
void SolverEqCholesky(double **A, double *b, int n, double *x, double **L)
{
int i, j, k;
double ** a;
double temp;
a = two_array_malloc(n, n + 1);
for (i = 0; i < n; i++)
{
for (j = 0; j < n; j++)
{
a[i][j] = A[i][j];
}
a[i][n] = b[i];
}
for (k = 0; k < n; k++)
{
temp = 0;
for (i = 0; i < k; i++)
{
temp = temp + a[i][k] * a[i][k];
}
a[k][k] = sqrt(a[k][k] - temp);
for (i = k + 1; i < n + 1; i++)
{
temp = 0;
for (j = 0; j < k; j++)
{
temp = temp + a[j][k] * a[j][i];
}
a[k][i] = (a[k][i] - temp) / a[k][k];
}
}
a[n - 1][n] = a[n - 1][n] / a[n - 1][n - 1];
for (i = 0; i < n; i++)
{
for (j = 0; j < n; j++)
{
L[j][i]= a[i][j];
}
}
for (k = n - 2; k >= 0; k--)
{
temp = 0;
for (i = k + 1; i < n; i++)
{
temp = temp + a[k][i] * a[i][n];
}
a[k][n] = (a[k][n] - temp) / a[k][k];
}
for (i = 0; i < n; i++)
{
x[i] = a[i][n];
}
two_array_clear(a, n);
}
#include
#include "windows.h"
using namespace std;
int SolverEqCholesky(double **A,double *b,int n,double eps,double *x,double **L)
{
int m,i,j,k;
double **a =new double *[n];
double *btemp= new double[n];
double s;
for(i=0;i<n;i++)
{
a[i]=new double[n+1];
}
m=n;
for(i=0;i<n;i++)
{
for(j=0;j<n;j++)
{
a[i][j]=A[i][j];
}
a[i][n]=b[i];
}
if(m<=0||n<=0)
{
cout<<"Input Mistake"<<endl;
}
for(k=0;k<n;k++)
{
for(i=k;i<n;i++)
{
for(j=0;j<k;j++)
{
a[i][k]=a[i][k]-a[i][j]*a[k][j];
}
}
if(fabs(a[k][k])<eps)
{
printf("%f",a[k][k]);
return 1;
}
a[k][k]=sqrt(a[k][k]);
for(i=k+1;i<n;i++)
{
a[i][k]=a[i][k]/a[k][k];
}
}
for(i=0;i<n;i++)
{
for(j=0;j<i;j++)
{
a[i][n]=a[i][n]-a[i][j]*a[j][n];
}
if(fabs(a[i][i])<eps)
{
return 1;
}
else
{
a[i][n]=a[i][n]/a[i][i];
}
}
for(i=n-1;i>=0;i--)
{
for(j=i+1;j<n;j++)
{
a[i][n]=a[i][n]-a[j][i]*a[j][n];
}
a[i][n]=a[i][n]/a[i][i];
}
for(i=0;i<m;i++)
{
x[i]=a[i][n];
}
for(i=0;i<n;i++)
{
delete[]a[i];
}
delete[]a;
delete[]btemp;
}
int main()
{
LARGE_INTEGER lFrequency, lEndCount, lBeginCount;
QueryPerformanceFrequency(&lFrequency);
QueryPerformanceCounter(&lBeginCount);
double CompuTime;
double **A,*b,*x,**L;
int kk=2;
A=new double *[kk];
b=new double[kk];
x=new double[kk];
L=new double *[kk];
for(int i=0;i<kk;i++)
{
A[i]=new double[kk];
L[i]=new double[kk];
}
int Q_num=1;
int n=2;
b[0]=2;b[1]=2;
A[0][0]=1.001;A[0][1]=0.999;
A[1][0]=0.999;A[1][1]=1.001;
SolverEqCholesky(A,b,n,1.0e-10,x,L);
for(int i=0;i<n;i++)
{
cout<<"x"<<i+1<<"=";
printf("%f\n",x[i]);
}
QueryPerformanceCounter(&lEndCount);
CompuTime = (double)(lEndCount.QuadPart - lBeginCount.QuadPart) / (double)lFrequency.QuadPart;
cout<<"Cholesky法计算时间为"<<CompuTime;
}
void SolverEqCholesky(double** A, double* b, int n, double* x, double** L)
{
double omiga ,lamda;
for (int i = 1;i <= n;i++)
{
lamda = 0;
omiga = 0;
for (int k = 1;k < i;k++)
lamda += L[i][k] * L[i][k];
L[i][i] = sqrt(A[i][i] - lamda);
for (int j = i + 1;j <= n;j++)
{
for (int k = 1;k < i;k++)
omiga += L[k][i] * L[k][j];
L[j][i]=L[i][j] = (A[i][j] - omiga) / L[i][i];
omiga = 0;
}
}
double y[100];
for (int u = 1;u <= n;u++)
{
for (int v = 1;v < u;v++)
{
b[u] -= L[u][v] * y[v];
}
y[u] = b[u] / L[u][u];
}
for (int u = n;u > 0;u--)
{
for (int v = n;v > u;v--)
{
y[u] -= L[u][v] * x[v];
}
x[u] = y[u] / L[u][u];
}
}
#include
#include
#include
#include
#include
#include "windows.h"
using namespace std;
const int N = 1005;
typedef double Type;
Type A[N][N], L[N][N];
void Cholesky(Type A[][N], Type L[][N], int n)
{
for(int k = 0; k < n; k++)
{
Type sum = 0;
for(int i = 0; i < k; i++)
sum += L[k][i] * L[k][i];
sum = A[k][k] - sum;
L[k][k] = sqrt(sum > 0 ? sum : 0);
for(int i = k + 1; i < n; i++)
{
sum = 0;
for(int j = 0; j < k; j++)
sum += L[i][j] * L[k][j];
L[i][k] = (A[i][k] - sum) / L[k][k];
}
for(int j = 0; j < k; j++)
L[j][k] = 0;
}
}
vector<Type> Solve(Type L[][N], vector<Type> X, int n)
{
for(int k = 0; k < n; k++)
{
for(int i = 0; i < k; i++)
X[k] -= X[i] * L[k][i];
X[k] /= L[k][k];
}
for(int k = n - 1; k >= 0; k--)
{
for(int i = k + 1; i < n; i++)
X[k] -= X[i] * L[i][k];
X[k] /= L[k][k];
}
return X;
}
void Print(Type L[][N], const vector<Type> B, int n)
{
vector<Type> X = Solve(L, B, n);
vector<Type>::iterator it;
int op;
for(it = X.begin(),op=1; it != X.end(); op++,it++)
printf("x%d=%.6f\n",op,*it);
cout<<endl;
}
int main()
{
LARGE_INTEGER lFrequency, lEndCount, lBeginCount;
QueryPerformanceFrequency(&lFrequency);
QueryPerformanceCounter(&lBeginCount);
double CompuTime;
memset(L, 0, sizeof(L));
int n=20;
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
A[i][j]=1.0/(double)(i+j+1);
}
}
vector<Type> B;
for(int i = 1; i <=n; i++)
{
Type y;
y=(double)i;
B.push_back(y);
}
Cholesky(A, L, n);
Print(L, B, n);
QueryPerformanceCounter(&lEndCount);
CompuTime = (double)(lEndCount.QuadPart - lBeginCount.QuadPart) / (double)lFrequency.QuadPart;
cout<<"Cholesky法计算时间为"<<CompuTime;
return 0;
}
#include
#include
#include
#include
#include
#include "windows.h"
using namespace std;
const int N = 1005;
typedef double Type;
Type A[N][N], L[N][N], D[N][N];
void Cholesky(Type A[][N], Type L[][N], Type D[][N], int n)
{
for(int k = 0; k < n; k++)
{
for(int i = 0; i < k; i++)
A[k][k] -= A[i][i] * A[k][i] * A[k][i];
for(int j = k + 1; j < n; j++)
{
for(int i = 0; i < k; i++)
A[j][k] -= A[j][i] * A[i][i] * A[k][i];
A[j][k] /= A[k][k];
}
}
memset(L, 0, sizeof(L));
memset(D, 0, sizeof(D));
for(int i = 0; i < n; i++)
{
D[i][i] = A[i][i];
L[i][i] = 1;
}
for(int i = 0; i < n; i++)
{
for(int j = 0; j < i; j++)
L[i][j] = A[i][j];
}
}
void Transposition(Type L[][N], int n)
{
for(int i = 0; i < n; i++)
{
for(int j = 0; j < i; j++)
swap(L[i][j], L[j][i]);
}
}
void Multi(Type A[][N], Type B[][N], int n)
{
Type **C = new Type*[n];
for(int i = 0; i < n; i++)
C[i] = new Type[n];
for(int i = 0; i < n; i++)
{
for(int j = 0; j < n; j++)
{
C[i][j] = 0;
for(int k = 0; k < n; k++)
C[i][j] += A[i][k] * B[k][j];
}
}
for(int i = 0; i < n; i++)
{
for(int j = 0; j < n; j++)
B[i][j] = C[i][j];
}
for(int i = 0; i < n; i++)
{
delete[] C[i];
C[i] = NULL;
}
delete C;
C = NULL;
}
vector<Type> Solve(Type L[][N], Type D[][N], vector<Type> X, int n)
{
for(int k = 0; k < n; k++)
{
for(int i = 0; i < k; i++)
X[k] -= X[i] * L[k][i];
X[k] /= L[k][k];
}
Transposition(L, n);
Multi(D, L, n);
for(int k = n - 1; k >= 0; k--)
{
for(int i = k + 1; i < n; i++)
X[k] -= X[i] * L[k][i];
X[k] /= L[k][k];
}
return X;
}
void Print(Type L[][N], Type D[][N], const vector<Type> B, int n)
{
int op;
vector<Type> X = Solve(L, D, B, n);
vector<Type>::iterator it;
for(it = X.begin(),op=1; it != X.end(); op++,it++)
printf("x%d=%.6f\n",op,*it);
cout<<endl;
}
int main()
{
LARGE_INTEGER lFrequency, lEndCount, lBeginCount;
QueryPerformanceFrequency(&lFrequency);
QueryPerformanceCounter(&lBeginCount);
double CompuTime;
int n=10;
memset(L, 0, sizeof(L));
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
A[i][j]=1.0/(double)(i+j+1);
}
}
vector<Type> B;
for(int i = 0; i < n; i++)
{
Type y;
y=(double)i;
B.push_back(y);
}
Cholesky(A, L, D, n);
Print(L, D, B, n);
QueryPerformanceCounter(&lEndCount);
CompuTime = (double)(lEndCount.QuadPart - lBeginCount.QuadPart) / (double)lFrequency.QuadPart;
cout<<"Cholesky法计算时间为"<<CompuTime;
return 0;
}