hdu 4117 GRE Words (ac自动机 线段树 dp)

参考:http://blog.csdn.net/no__stop/article/details/12287843

此题利用了ac自动机fail树的性质,fail指针建立为树,表示父节点是孩子节点的后缀

然后更新其影响的字符串的方法,即区间更新,维护最大值,用线段树优化。

而其可以影响的字符串为其在fail树中的子树节点


此题一直MLE,调了一下午+晚上。最后发现。

(1)ac自动机中的节点开始直接初始化,应动态初始化(也终于理解了许多人那么做)

(2)还有用vector表示树边时,一开始初始clear,也会耗很多内存。

(3)线段树开始直接初始化CLR(smax, 0)CLR(cov, 0),由于数组比较大,内存耗较大

最后,ac自动机节点动态初始化,用链表模拟表示树边,线段树动态build,终于有MLE变成了wa

怒重敲,终于ac了


PS:一开始使用后缀数组ac的,数据水了。。。

不过ac自动机2s+,后缀数组8s+

ac自动机:

 

#pragma comment(linker, "/STACK:1024000000,1024000000")

#include <cstdio>

#include <ctime>

#include <cstdlib>

#include <cstring>

#include <queue>

#include <string>

#include <set>

#include <stack>

#include <map>

#include <cmath>

#include <vector>

#include <iostream>

#include <algorithm>

using namespace std;



#define FE(i, a, b) for(int i = (a); i <= (b); ++i)

#define FD(i, b, a) for(int i = (b); i >= (a); --i)

#define REP(i, N) for(int i = 0; i < (N); ++i)

#define CLR(a, v) memset(a, v, sizeof(a))

#define PB push_back

#define MP make_pair

typedef long long LL;

const int INF = 0x3f3f3f3f;



#define lson l, m, rt << 1

#define rson m + 1, r, rt << 1 | 1



const int MAX = 333333;

const int SIG = 26;



struct Edge{

    int to, next;

}adj[MAX * 2];

int adj_cnt;

int head[MAX];

void adj_init()

{

    adj_cnt = 0;

    CLR(head, -1);

}

void add_edge(int x, int y)

{

    adj[adj_cnt].to = y;

    adj[adj_cnt].next = head[x];

    head[x] = adj_cnt++;

}



int tl[MAX], tr[MAX];

int tot;



char ca[MAX], s[MAX];

int id[MAX];

int val[MAX];



int smax[MAX << 2], cov[MAX << 2];

void update_cov(int rt, int x)

{

    smax[rt] = max(smax[rt], x);

    cov[rt] = max(cov[rt], x);

}

void up(int rt)

{

    smax[rt] = max(smax[rt << 1], smax[rt << 1 | 1]);

}

void down(int rt)

{

    if (cov[rt])

    {

        update_cov(rt << 1, cov[rt]); update_cov(rt << 1 | 1, cov[rt]);

        cov[rt] = 0;

    }

}

void build(int l, int r, int rt)///!!!

{

    smax[rt] = cov[rt] = 0;

    if (l == r) return ;

    int m = (l + r) >> 1;

    build(lson); build(rson);

    up(rt);

}

void update(int L, int R, int x, int l, int r, int rt)

{

    if (L <= l && r <= R)

    {

        update_cov(rt, x);

        return ;

    }

    down(rt);

    int m = (l + r) >> 1;

    if (L <= m) update(L, R, x, lson);

    if (R > m) update(L, R, x, rson);

    up(rt);

}

int query(int p, int l, int r, int rt)

{

    if (l == r) return smax[rt];

    down(rt);

    int m = (l + r) >> 1;

    if (p <= m) return query(p, lson);

    else return query(p, rson);

}



struct AC{

    int ch[MAX][SIG];

    int f[MAX];

    int sz;

    int newnode()///!!!

    {

        CLR(ch[sz], 0);

        return sz++;

    }

    void init()

    {

        sz = 0;

        newnode();

    }

    int idx(char c) { return c-'a'; }

    void insert(char *s)

    {

        int u=0,n=strlen(s);

        for(int i=0;i<n;i++)

        {

            int c=idx(s[i]);

            if(!ch[u][c]) ch[u][c] = newnode();

            u = ch[u][c];

        }

    }

    void getFail()

    {

        queue<int> q;

        f[0] = 0;

        for(int c = 0; c < SIG; c++)

        {

            int u = ch[0][c];

            if(u) { f[u] = 0; q.push(u); }

        }



        while(!q.empty())

        {

            int r = q.front(); q.pop();

            for(int c = 0; c < SIG; c++)

            {

                int  u = ch[r][c];

                if(!u) { ch[r][c] = ch[f[r]][c]; continue; }

                q.push(u);

                int v = f[r];

                while(v && !ch[v][c]) v = f[v];

                f[u] = ch[v][c];

            }

        }

    }

    void dfs(int u, int fa)

    {

        tl[u] = ++tot;

        for (int r = head[u]; r != -1; r = adj[r].next)

        {

            int v = adj[r].to;

            if (v != fa) dfs(v, u);

        }

        tr[u] = tot;

    }

    void makeTree()

    {

        adj_init();

        for (int i = 1; i < sz; i++)///

        {

            add_edge(i, f[i]); add_edge(f[i], i);

        }

        tot = 0;

        dfs(0, -1);

    }

    int solve(char *s)

    {

        int len = strlen(s);

        int u = 0;

        int now, ans;

        ans = now = 0;

        build(1, tot, 1);

        for (int i = 0; i < len; i++)

        {

            u = ch[u][s[i] - 'a'];

            int valu = query(tl[u], 1, tot, 1);

            now = max(now, valu);

            if (id[i])

            {

                if (val[id[i]] > 0) now += val[id[i]];

                ans = max(ans, now);

                update(tl[u], tr[u], now, 1, tot, 1);



                u = now = 0;

            }

        }

        return ans;

    }

}ac;





int main()

{

    int len;

    int n, m;

    int T, nc;

    nc = 1;

    scanf("%d", &T);

    while (T--)

    {

        scanf("%d", &n);

        len = 0;

        ac.init();

        CLR(id, 0);

        for (int i = 1; i <= n;i++)

        {

            scanf("%s%d", ca, &val[i]);

            ac.insert(ca);

            int l = strlen(ca);

            REP(j, l)

            {

                s[len++] = ca[j];

            }

            id[len - 1] = i;

        }

        ac.getFail();

        ac.makeTree();

        printf("Case #%d: %d\n", nc++, ac.solve(s));

    }

}


后缀数组:

 

 

//#pragma warning (disable: 4786)

//#pragma comment (linker, "/STACK:16777216")

//HEAD

#include <cstdio>

#include <ctime>

#include <cstdlib>

#include <cstring>

#include <queue>

#include <string>

#include <set>

#include <stack>

#include <map>

#include <cmath>

#include <vector>

#include <iostream>

#include <algorithm>

using namespace std;

//LOOP

#define FF(i, a, b) for(int i = (a); i < (b); ++i)

#define FD(i, b, a) for(int i = (b) - 1; i >= (a); --i)

#define FE(i, a, b) for(int i = (a); i <= (b); ++i)

#define FED(i, b, a) for(int i = (b); i>= (a); --i)

#define REP(i, N) for(int i = 0; i < (N); ++i)

#define CLR(A,value) memset(A,value,sizeof(A))

#define CPY(a, b) memcpy(a, b, sizeof(a))

#define FC(it, c) for(__typeof((c).begin()) it = (c).begin(); it != (c).end(); it++)

//STL

#define SZ(V) (int)V.size()

#define PB push_back

//INPUT

#define RI(n) scanf("%d", &n)

#define RII(n, m) scanf("%d%d", &n, &m)

#define RIII(n, m, k) scanf("%d%d%d", &n, &m, &k)

#define RIV(n, m, k, p) scanf("%d%d%d%d", &n, &m, &k, &p)

#define RV(n, m, k, p, q) scanf("%d%d%d%d%d", &n, &m, &k, &p, &q)

#define RS(s) scanf("%s", s)

//OUTPUT

#define WI(n) printf("%d\n", n)

#define WS(s) printf("%s\n", s)

typedef long long LL;

typedef unsigned long long ULL;

typedef vector <int> VI;

const int INF = 1000000000;

const double eps = 1e-10;



const int MAXN=110000 * 4;



int wa[MAXN], wb[MAXN], wv[MAXN], wn[MAXN];

char r[MAXN];

int a[MAXN], sa[MAXN], rank[MAXN], height[MAXN];

int idx[MAXN];

int val[20010];

int len[20010];

int sumlen[20010];

int dp[20010];



int cmp(int *r, int a, int b, int k)

{

    return r[a] == r[b] && r[a + k] == r[b + k];

}

void build_sa(int *r, int *sa, int n, int m)

{

    int i, j, p;

    int *x = wa, *y = wb, *t;

    for (i = 0; i < m; i++) wn[i] = 0;

    for (i = 0; i < n; i++)wn[x[i] = r[i]]++;///

    for (i = 1; i < m; i++) wn[i] += wn[i - 1];

    for (i = n - 1; i >= 0; i--) sa[--wn[x[i]]] = i;



    for (p = 1, j = 1; p < n; j <<= 1, m = p)

    {

        for (p = 0, i = n - j; i < n; i++) y[p++] = i;

        for (i = 0; i < n; i++) if (sa[i] >= j) y[p++] = sa[i] - j;



        for (i = 0; i < m; i++) wn[i] = 0;

        for (i = 0; i < n; i++) wn[wv[i] = x[y[i]]]++;///

        for (i = 1; i < m; i++) wn[i] += wn[i - 1];

        for (i = n - 1; i >= 0; i--) sa[--wn[wv[i]]] = y[i];



        t = x; x = y; y = t;

        x[sa[0]] = 0; p = 1;

        for (i = 1; i < n; i++)

            x[sa[i]] = cmp(y, sa[i - 1], sa[i], j) ? p - 1 : p++;

    }

}



void getHeight(int *r, int *sa, int n)

{

    int i, j, k = 0;

    for (i = 1; i <= n; i++)

    {

        rank[sa[i]] = i;

        height[i] = 0;

    }

    for (i = 0; i < n; i++)

    {

        if (k) k--;

        j = sa[rank[i] - 1];

        while (r[i + k] == r[j + k]) k++;

        height[rank[i]] = k;

    }

}



int getid(int x)

{

    return idx[sa[x]];

}

int solve(int t, int n)

{

    int sum = 0;

    FE(i, 1, t)

    {

        dp[i] = val[i];

        sumlen[i] = sum;

        sum += len[i] + 1;

    }

    int nowi;

    FED(i, t, 1)

    {

        nowi = sumlen[i];



        int lmin = INF;

        for (int j = rank[nowi] + 1; j <= n; j++)

        {

            lmin = min(lmin, height[j]);

            if (lmin < len[i]) break;

            if (nowi < sa[j])

                dp[i] = max(dp[i], val[i] + dp[getid(j)]);

        }

        lmin = INF;

        for (int j = rank[nowi] - 1; j > 0; j--)

        {

            lmin = min(lmin, height[j + 1]);

            if (lmin < len[i]) break;

            if (nowi < sa[j])

                dp[i] = max(dp[i], val[i] + dp[getid(j)]);

        }

    }

    int ans = 0;

    FE(i, 1, t) ans = max(ans, dp[i]);

    return ans;

}



int main()

{

    int test;

    int t, n, m;

    int ncase = 1;

    RI(test);

    while (test--)

    {

        n = 0;

        m = 256;

        CLR(idx, 0);

        RI(t);

        FE(i, 1, t)

        {

            RS(r);

            RI(val[i]);

            int l = len[i] = strlen(r);

            REP(j, l)

            {

                a[n] = (int)r[j];

                idx[n++] = i;

            }

            a[n++] = m++;

        }

        a[--n] = 0; --m;

        build_sa(a, sa, n + 1, m);

        getHeight(a, sa, n);



        printf("Case #%d: %d\n", ncase++, solve(t, n));

    }

    return 0;

}


 


 

你可能感兴趣的:(AC自动机)