- RT-DETR改进|爆改模型|涨点|使用VMamba作为骨干网络(附代码+修改教程)
爆改模型
网络深度学习人工智能计算机视觉
一、文本介绍本文修改的模型是RT-DETR,在原本的RT-DETR中,使用ResNet作为骨干网络,本文使用最新的VMamba(VisualStateSpaceModel)替换ResNet作为RT-DETR的骨干网络。VMamba是一种全新的视觉框架,VMamba结合了CNNs和ViTs的优势,同时优化了计算效率,能够在保持全局感受野的情况下实现线性复杂度。为了解决方向敏感性问题,VMamba引入
- Android Studio在移动开发中的性能优化案例分析
移动开发前沿
androidstudio性能优化androidai
AndroidStudio在移动开发中的性能优化案例分析关键词:AndroidStudio、移动开发、性能优化、内存管理、CPU优化、APK大小优化、工具链摘要:本文深入解析AndroidStudio在移动开发中的核心性能优化能力,通过内存管理、CPU调度、APK体积优化等典型场景的实战案例,系统讲解Profiler、Lint、Gradle等工具链的深度应用。结合具体代码示例和数学模型,分析内存泄
- HTTP 协议深入理解
大曰编程
java面试http网络协议网络
在Web服务与API设计中,HTTP协议是客户端与服务器通信的基石。本文从协议演进、核心机制、缓存策略、安全特性及面试高频问题五个维度,系统解析HTTP的底层原理与工程实践。一、HTTP协议演进与版本差异1.1版本特性对比版本发布年份核心改进局限性HTTP1.01996基础请求-响应模型,支持GETPOSTHEAD方法无持久连接,每次请求需建立TCP连接HTTP1.11999持久连接(Connec
- AI 时代下,普通人不能错过的五大变现机会
Jasonakeke
AI人工智能大数据
AI时代下,普通人不能错过的五大变现机会关键词:轻资产低门槛强需求机会1:知识付费——借“AI”做知识博主核心逻辑:AI降低知识生产门槛AI这个领域有巨大的科普红利和流量红利操作步骤:定位细分领域用AI工具快速生成内容选择平台机会2:AI自媒体——流量即现金变现模式:自媒体商单广告分成带货私域转化核心逻辑:目前AI存在巨大的科普红利和流量红利+AI能够提升创作效率爆款公式:选题:AI工具测评+具体
- 【Python基础】15 Python并发编程进阶
智算菩萨
python人工智能
在现代软件开发中,随着多核处理器的普及和网络应用的复杂化,并发编程已经成为提升程序性能的关键技术。Python作为一门优雅且强大的编程语言,提供了多种并发编程方案,包括多线程、多进程和异步编程。然而,很多开发者在面对具体场景时,往往不知道该选择哪种方案,或者对这些技术的底层原理缺乏深入理解。本文将深入探讨Python并发编程的三大核心技术,从底层原理到实际应用,通过详实的案例分析帮助读者掌握在不同
- MIT 6.S184 Lec01 Flow and Diffusion Models
克斯维尔的明天_
机器学习人工智能
MIT6.S184Lec01FlowandDiffusionModels本节中,我们将描述如何通过模拟一个适当构造的微分方程来获得所需的转换。例如,流匹配和扩散模型分别涉及模拟常微分方程(ODE)和随机微分方程(SDE)。因此,本节的目标是定义和构建这些生成模型。具体来说,我们首先定义ODE和SDE,并讨论它们的模拟。其次,我们描述如何使用深度神经网络对ODE/SDE进行参数化。从中推导出流模型和
- 【设计模式05】原型模式
鼠鼠我呀2
设计模式设计模式原型模式
前言通过clone来实例化对象,适用于复杂大对象的创建,一般用不着UML类图无代码示例packagecom.sw.learn.pattern.B_create.d_prototype;importjava.lang.reflect.Array;importjava.util.*;importjava.util.Scanner;publicclassMain{/***广告主可以在页面上复制已有订单模
- BAAI/BGE-VL多模态模型部署、原理、代码详解(实现图像文本混合检索),包含BEG-VL多模态模型的本地部署详细步骤及代码原理解析
令令小宁
python语言模型自然语言处理nlp人工智能
本文包含BGE-VL多模态模型的本地部署详细步骤及代码原理解析文章目录前言一、模型下载二、计算流程解析1.BGE-VL-base/Large2.BGE-VL-MLLM-s1/s2三、总结前言提示:这里可以添加本文要记录的大概内容:包含四个模型及数据集,数据集未开源,四个模型可以分别下载:其中,BGE-VL-base/Large是基于CLIP训练的模型,BGE-VL-MLLM-S1/S2是基于LLM
- 本地部署Jina-CLIP v2:多语言多模态文本图像向量模型(包含一些踩坑记录和技巧)
令令小宁
jina语言模型python
JinaCLIPv2:Jina-CLIP-v2是一个全新的通用多语言多模态向量模型,该模型基于jina-clip-v1和jina-embeddings-3构建,实现了一些关键改进。关于Jina-CLIP-v2的更多介绍点此可了解模型特点模型开源链接:https://huggingface.co/jinaai/jina-clip-v2在它的开源链接的介绍中,我们可以得知,Jina-CLIP-v2的参
- [精选] 2025最新MySQL和PostgreSQL区别、迁移、安全、适用场景全解析
猫头虎
数据库技术专区#MySQL专栏#PostgreSQL专栏mysqlpostgresql安全运维云原生数据库容器
[精选]2025最新MySQL和PostgreSQL区别、迁移、安全、适用场景全解析在当前的数据库技术领域,MySQL和PostgreSQL作为两大主流数据库,拥有各自独特的优势和应用场景。随着技术的不断演进,特别是2025年的最新动态和趋势,两者在功能、迁移、性能、安全性等方面都有了一定的变化和优化。因此,本文将通过详细的对比和分析,帮助初学者更好地理解这两种数据库,帮助你做出选择,或者顺利进行
- AutoGen行业应用与典型场景实践
摘要AutoGen作为分布式多智能体AI系统,已在金融、医疗、教育、智能客服等行业落地应用。本文系统梳理AutoGen在各行业的应用模式、业务流程、Python实战、最佳实践与常见问题,助力中国AI开发者高效构建行业级AI解决方案。1.AutoGen行业应用全景与价值支持多智能体协作,适配复杂业务流程易于集成主流大模型与行业工具分布式部署,满足高可用与弹性扩展需求典型行业:金融风控、医疗问答、教育
- 从 Alpha 到 Final:Python 各阶段版本到底该怎么用?
三金C_C
Pythonpython版本生命周期
主流的Python是由PythonSoftwareFoundation(PSF,Python软件基金会)主导的:PSF是一个非营利组织负责维护Python官方语言规范、标准库、社区基础设施它主导的实现版本是我们日常使用的:CPythonPython的版本阶段(版本周期)。这些阶段是官方正式定义的,适用于每一个Python主版本(比如3.12、3.13、3.14…)Python版本的四大阶段Pyth
- AI 大模型重塑软件开发流程的四点观察:跃迁/重构/变革/挑战
敖行客 Allthinker
Thinker说人工智能大模型
作为软件开发的从业者,笔者深刻感受到AI大模型对开发流程的颠覆性影响。从最初的代码补全工具到如今能够自主完成复杂任务的智能协作者,AI的角色转变正推动软件开发范式发生系统性变革。基于实际开发经验与行业案例,从四个维度,浅显讲述一下AI大模型重塑软件开发流程的观察。观察一:编码能力突破——从“助手”到“协作者”的技术跃迁核心变化:AI从“补全代码片段”进化为“自主构建完整系统”过去,AI在开发中的角
- go channel用法
三金C_C
gogolangchannel
介绍channel在Go中是一种专门用来在goroutine之间传递数据的类型安全的管道。你可以把它理解成:多个goroutine之间的**“传话筒”**,谁往通道里塞东西,另一个goroutine就能接收到。Go语言采用CSP(CommunicatingSequentialProcesses)模型,也就是鼓励:“不要通过共享内存来通信,而要通过通信来共享内存”也就是通过channel来传递数据,
- Llama改进之——RoPE旋转位置编码
愤怒的可乐
NLP项目实战#LLaMARoPE旋转位置编码
引言旋转位置编码(RotaryPositionEmbedding,RoPE)将绝对相对位置依赖纳入自注意力机制中,以增强Transformer架构的性能。目前很火的大模型LLaMA、QWen等都应用了旋转位置编码。之前在[论文笔记]ROFORMER中对旋转位置编码的原始论文进行了解析,重点推导了旋转位置编码的公式,本文侧重实现,同时尽量简化数学上的推理,详细推理可见最后的参考文章。复数与极坐标复数
- Llama改进之——分组查询注意力
愤怒的可乐
#NLP项目实战自然语言处理llama深度学习人工智能分组查询注意力旋转位置编码
引言今天介绍LLAMA2模型引入的关于注意力的改进——分组查询注意力(Grouped-queryattention,GQA)1。Transformer中的多头注意力在解码阶段来说是一个性能瓶颈。多查询注意力2通过共享单个key和value头,同时不减少query头来提升性能。多查询注意力可能导致质量下降和训练不稳定,因此常用的是分组查询注意力。然后我们结合上篇文章3探讨的旋转位置编码,将选择位置编
- Llama改进之——均方根层归一化RMSNorm
愤怒的可乐
NLP项目实战#llama
引言在学习完GPT2之后,从本文开始进入Llama模型系列。本文介绍Llama模型的改进之RMSNorm(均方根层归一化)。它是由RootMeanSquareLayerNormalization论文提出来的,可以参阅其论文笔记1。LayerNorm层归一化(LayerNorm)对Transformer等模型来说非常重要,它可以帮助稳定训练并提升模型收敛性。LayerNorm针对一个样本所有特征计算
- Llama改进之——SwiGLU激活函数
愤怒的可乐
#自然语言处理NLP项目实战llama
引言今天介绍LLAMA模型引入的关于激活函数的改进——SwiGLU1,该激活函数取得了不错的效果,得到了广泛地应用。SwiGLU是GLU的一种变体,其中包含了GLU和Swish激活函数。GLUGLU(GatedLinearUnits,门控线性单元)2引入了两个不同的线性层,其中一个首先经过sigmoid函数,其结果将和另一个线性层的输出进行逐元素相乘作为最终的输出:GLU(x,
- 强化学习RLHF详解
贝塔西塔
强化学习大模型人工智能深度学习机器学习算法语言模型
RLHF(ReinforcementLearningfromHumanFeedback)模型详解一、背景1.传统强化学习的局限性传统的强化学习(ReinforcementLearning,RL)依赖于预定义的奖励函数(RewardFunction),但在复杂任务(如自然语言生成、机器人控制)中,设计精确的奖励函数极为困难。例如:模糊目标:生成“高质量文本”难以量化,无法用简单的指标(如BLEU、R
- 强人工智能是否会诞生于现在的AI之中
一花·一叶
人工智能语言模型
为什么我认为当前AI方法无法实现真正的人工智能?随着大模型的发展日新月异,越来越多的人开始相信我们正在接近通用人工智能(AGI)。然而,作为一名人工智能领域的算法工程师,我反而越来越确信:现有的技术路径——以Transformer为核心的深度神经网络,可能已经达到了它的能力上限。我们或许正站在一个新时代的门槛上:真正的强人工智能将不会诞生于现有的范式中,而需要一条全新的算法路径。Transform
- 手把手从零打造 Llama3:解锁下一代预训练模型
会飞的Anthony
信息系统人工智能AIGC自然语言处理人工智能llama3AIGC
引言Llama3相较于Llama2,不仅在模型架构上做了显著优化,尤其是全局查询注意力机制(GQA)的引入,使得模型在大规模数据处理上表现更加出色。同时,Llama3采用了与GPT一致的tiktoken分词器,大幅提升了分词效率。本篇文章将带你从头构建Llama3预训练流程,深入了解其关键细节和实现方式,让你掌握这一下一代模型的核心技术。1.启动训练脚本在这一步中,我们将实现Llama3的预训练框
- 从零实现Llama3:深入解析Transformer架构与实现细节
祁婉菲Flora
从零实现Llama3:深入解析Transformer架构与实现细节llama3-from-scratchllama3一次实现一个矩阵乘法。项目地址:https://gitcode.com/gh_mirrors/ll/llama3-from-scratch引言本文将深入探讨如何从零开始实现Llama3语言模型。我们将从最基本的张量操作开始,逐步构建完整的Transformer架构。通过这个过程,读者
- PyTorch-Llama: 从零开始实现LLaMA 2模型教程
乔昕连
PyTorch-Llama:从零开始实现LLaMA2模型教程pytorch-llamaLLaMA2implementedfromscratchinPyTorch项目地址:https://gitcode.com/gh_mirrors/py/pytorch-llama1.项目介绍PyTorch-Llama是一个在PyTorch平台上完全从零开始实现的LLaMA2模型仓库。该模型是一个强大的自回归语言模
- Redis缓存击穿、缓存穿透、缓存雪崩(定义、产生原因、解决方案--代码示例)
卜锦元
redis数据库数据优化缓存redis数据库
前言Redis缓存作为高性能的数据访问层,在实际开发中经常面临三大经典问题:缓存击穿、缓存穿透、缓存雪崩。本文将从它们各自的定义、产生的原因、实际开发过程中的解决方案出发,为大家详细描述相关的信息,并附有相关的go代码示例(嗯…最近go写的比较多,大家也可以用其它语言带入,原理都是一样的)一、缓存穿透(CachePenetration)❓是什么?客户端频繁请求数据库中根本不存在的Key,缓存不命中
- 如何训练一个 Reward Model:RLHF 的核心组件详解
茫茫人海一粒沙
深度学习人工智能强化学习
RewardModel(奖励模型)是RLHF的核心,决定了模型“觉得人类偏好什么”的依据。本文将系统介绍如何从零开始训练一个rewardmodel,包括数据准备、模型结构、损失函数、训练方法与注意事项。什么是RewardModel?RewardModel(RM)是一个评分器:它输入一个文本(通常是prompt+模型回答),输出一个实数分值(reward),表示这个回答的“人类偏好程度”。它不是分类
- 【Rust日报】Rust稳定2024版本将于 2025年2月20日发布
fastembed-rs-AI嵌入库FastEmbed的Rust实现,提供了快速的文本嵌入、图像嵌入和候选项重新排序功能。它具有以下主要特性:支持同步使用,无需依赖Tokio。使用@pykeio/ort进行高性能的ONNX推理。使用@huggingface/tokenizers进行快速编码。支持使用@rayon-rs/rayon进行批量嵌入生成和并行计算。默认模型是FlagEmbedding,在M
- 冒泡排序的基本思想、基本操作、代码实现以及性能分析总结
第1缕阳光
算法数据结构排序算法c++
冒泡排序1,基本思想将待排序的元素进行两两比较,如果存在逆序,就对其进行交换操作,直到所有的元素的顺序都排好。2,基本操作对于待排序序列中的n个元素,第i趟冒泡排序从1到n-i+1依次比较相邻两个记录的大小,如果存在逆序关系,就交换;最后在这从1到n-i+1个元素中,最大(我们默认排序结果为从小到大)的元素被交换到第n-i+1的位置。可以看出,在第i趟排序时前n-i+1个元素是处于无序状态,第n-
- 给定一个长度为n的数列,将这个数列按从小到大的顺序排列。1<=n<=200 (蓝桥杯训练题库)c/c++
#includeinti,n,j,v;intsort(int*a,intn){for(i=0;ia[j]){v=a[i];a[i]=a[j];a[j]=v;}}intmain(){scanf("%d",&n);inta[200];for(i=0;i#includeusingnamespacestd;intmain(){intn;cin>>n;inta[200];for(inti=0;i>a[i];
- 昇腾NPU节点软件版本检查与升级方法
一、问题背景当我们需要在节点部署DeepSeek大模型时,需要检查昇腾云配套的版本驱动和固件版本,如果发现节点版本不配套建议升级到配套版本。检查方法:npu-smiinfo-tboard-i1|egrep-i"software|firmware"二、升级方法需要注意的是,一定要先升级固件,再升级驱动;如果需要降级版本,流程与升级一样。一般而言,固件包是带有firmware关键字,驱动包带有dirv
- 利用人名语言分类案例演示RNN、LSTM和GRU的区别(基于PyTorch)
.30-06Springfield
rnnlstmgru分类人工智能pythonpytorch
文章目录一、程序结构1.1程序整体结构1.2各模块功能关系流程图二、数据预处理模块详解2.1定义字符集和语言类别2.2读取数据2.3人名转换为one-hot编码张量2.4自定义数据集类2.5数据加载器三、模型定义模块详解3.1RNN模型3.2LSTM模型3.3GRU模型四、模型训练与测试模块详解4.1测试模型基本功能4.2模型训练主函数五、结果可视化与对比模块详解六、模型预测模块详解七、案例结果分
- ASM系列五 利用TreeApi 解析生成Class
lijingyao8206
ASM字节码动态生成ClassNodeTreeAPI
前面CoreApi的介绍部分基本涵盖了ASMCore包下面的主要API及功能,其中还有一部分关于MetaData的解析和生成就不再赘述。这篇开始介绍ASM另一部分主要的Api。TreeApi。这一部分源码是关联的asm-tree-5.0.4的版本。
在介绍前,先要知道一点, Tree工程的接口基本可以完
- 链表树——复合数据结构应用实例
bardo
数据结构树型结构表结构设计链表菜单排序
我们清楚:数据库设计中,表结构设计的好坏,直接影响程序的复杂度。所以,本文就无限级分类(目录)树与链表的复合在表设计中的应用进行探讨。当然,什么是树,什么是链表,这里不作介绍。有兴趣可以去看相关的教材。
需求简介:
经常遇到这样的需求,我们希望能将保存在数据库中的树结构能够按确定的顺序读出来。比如,多级菜单、组织结构、商品分类。更具体的,我们希望某个二级菜单在这一级别中就是第一个。虽然它是最后
- 为啥要用位运算代替取模呢
chenchao051
位运算哈希汇编
在hash中查找key的时候,经常会发现用&取代%,先看两段代码吧,
JDK6中的HashMap中的indexFor方法:
/**
* Returns index for hash code h.
*/
static int indexFor(int h, int length) {
- 最近的情况
麦田的设计者
生活感悟计划软考想
今天是2015年4月27号
整理一下最近的思绪以及要完成的任务
1、最近在驾校科目二练车,每周四天,练三周。其实做什么都要用心,追求合理的途径解决。为
- PHP去掉字符串中最后一个字符的方法
IT独行者
PHP字符串
今天在PHP项目开发中遇到一个需求,去掉字符串中的最后一个字符 原字符串1,2,3,4,5,6, 去掉最后一个字符",",最终结果为1,2,3,4,5,6 代码如下:
$str = "1,2,3,4,5,6,";
$newstr = substr($str,0,strlen($str)-1);
echo $newstr;
- hadoop在linux上单机安装过程
_wy_
linuxhadoop
1、安装JDK
jdk版本最好是1.6以上,可以使用执行命令java -version查看当前JAVA版本号,如果报命令不存在或版本比较低,则需要安装一个高版本的JDK,并在/etc/profile的文件末尾,根据本机JDK实际的安装位置加上以下几行:
export JAVA_HOME=/usr/java/jdk1.7.0_25  
- JAVA进阶----分布式事务的一种简单处理方法
无量
多系统交互分布式事务
每个方法都是原子操作:
提供第三方服务的系统,要同时提供执行方法和对应的回滚方法
A系统调用B,C,D系统完成分布式事务
=========执行开始========
A.aa();
try {
B.bb();
} catch(Exception e) {
A.rollbackAa();
}
try {
C.cc();
} catch(Excep
- 安墨移动广 告:移动DSP厚积薄发 引领未来广 告业发展命脉
矮蛋蛋
hadoop互联网
“谁掌握了强大的DSP技术,谁将引领未来的广 告行业发展命脉。”2014年,移动广 告行业的热点非移动DSP莫属。各个圈子都在纷纷谈论,认为移动DSP是行业突破点,一时间许多移动广 告联盟风起云涌,竞相推出专属移动DSP产品。
到底什么是移动DSP呢?
DSP(Demand-SidePlatform),就是需求方平台,为解决广 告主投放的各种需求,真正实现人群定位的精准广
- myelipse设置
alafqq
IP
在一个项目的完整的生命周期中,其维护费用,往往是其开发费用的数倍。因此项目的可维护性、可复用性是衡量一个项目好坏的关键。而注释则是可维护性中必不可少的一环。
注释模板导入步骤
安装方法:
打开eclipse/myeclipse
选择 window-->Preferences-->JAVA-->Code-->Code
- java数组
百合不是茶
java数组
java数组的 声明 创建 初始化; java支持C语言
数组中的每个数都有唯一的一个下标
一维数组的定义 声明: int[] a = new int[3];声明数组中有三个数int[3]
int[] a 中有三个数,下标从0开始,可以同过for来遍历数组中的数
- javascript读取表单数据
bijian1013
JavaScript
利用javascript读取表单数据,可以利用以下三种方法获取:
1、通过表单ID属性:var a = document.getElementByIdx_x_x("id");
2、通过表单名称属性:var b = document.getElementsByName("name");
3、直接通过表单名字获取:var c = form.content.
- 探索JUnit4扩展:使用Theory
bijian1013
javaJUnitTheory
理论机制(Theory)
一.为什么要引用理论机制(Theory)
当今软件开发中,测试驱动开发(TDD — Test-driven development)越发流行。为什么 TDD 会如此流行呢?因为它确实拥有很多优点,它允许开发人员通过简单的例子来指定和表明他们代码的行为意图。
TDD 的优点:
&nb
- [Spring Data Mongo一]Spring Mongo Template操作MongoDB
bit1129
template
什么是Spring Data Mongo
Spring Data MongoDB项目对访问MongoDB的Java客户端API进行了封装,这种封装类似于Spring封装Hibernate和JDBC而提供的HibernateTemplate和JDBCTemplate,主要能力包括
1. 封装客户端跟MongoDB的链接管理
2. 文档-对象映射,通过注解:@Document(collectio
- 【Kafka八】Zookeeper上关于Kafka的配置信息
bit1129
zookeeper
问题:
1. Kafka的哪些信息记录在Zookeeper中 2. Consumer Group消费的每个Partition的Offset信息存放在什么位置
3. Topic的每个Partition存放在哪个Broker上的信息存放在哪里
4. Producer跟Zookeeper究竟有没有关系?没有关系!!!
//consumers、config、brokers、cont
- java OOM内存异常的四种类型及异常与解决方案
ronin47
java OOM 内存异常
OOM异常的四种类型:
一: StackOverflowError :通常因为递归函数引起(死递归,递归太深)。-Xss 128k 一般够用。
二: out Of memory: PermGen Space:通常是动态类大多,比如web 服务器自动更新部署时引起。-Xmx
- java-实现链表反转-递归和非递归实现
bylijinnan
java
20120422更新:
对链表中部分节点进行反转操作,这些节点相隔k个:
0->1->2->3->4->5->6->7->8->9
k=2
8->1->6->3->4->5->2->7->0->9
注意1 3 5 7 9 位置是不变的。
解法:
将链表拆成两部分:
a.0-&
- Netty源码学习-DelimiterBasedFrameDecoder
bylijinnan
javanetty
看DelimiterBasedFrameDecoder的API,有举例:
接收到的ChannelBuffer如下:
+--------------+
| ABC\nDEF\r\n |
+--------------+
经过DelimiterBasedFrameDecoder(Delimiters.lineDelimiter())之后,得到:
+-----+----
- linux的一些命令 -查看cc攻击-网口ip统计等
hotsunshine
linux
Linux判断CC攻击命令详解
2011年12月23日 ⁄ 安全 ⁄ 暂无评论
查看所有80端口的连接数
netstat -nat|grep -i '80'|wc -l
对连接的IP按连接数量进行排序
netstat -ntu | awk '{print $5}' | cut -d: -f1 | sort | uniq -c | sort -n
查看TCP连接状态
n
- Spring获取SessionFactory
ctrain
sessionFactory
String sql = "select sysdate from dual";
WebApplicationContext wac = ContextLoader.getCurrentWebApplicationContext();
String[] names = wac.getBeanDefinitionNames();
for(int i=0; i&
- Hive几种导出数据方式
daizj
hive数据导出
Hive几种导出数据方式
1.拷贝文件
如果数据文件恰好是用户需要的格式,那么只需要拷贝文件或文件夹就可以。
hadoop fs –cp source_path target_path
2.导出到本地文件系统
--不能使用insert into local directory来导出数据,会报错
--只能使用
- 编程之美
dcj3sjt126com
编程PHP重构
我个人的 PHP 编程经验中,递归调用常常与静态变量使用。静态变量的含义可以参考 PHP 手册。希望下面的代码,会更有利于对递归以及静态变量的理解
header("Content-type: text/plain");
function static_function () {
static $i = 0;
if ($i++ < 1
- Android保存用户名和密码
dcj3sjt126com
android
转自:http://www.2cto.com/kf/201401/272336.html
我们不管在开发一个项目或者使用别人的项目,都有用户登录功能,为了让用户的体验效果更好,我们通常会做一个功能,叫做保存用户,这样做的目地就是为了让用户下一次再使用该程序不会重新输入用户名和密码,这里我使用3种方式来存储用户名和密码
1、通过普通 的txt文本存储
2、通过properties属性文件进行存
- Oracle 复习笔记之同义词
eksliang
Oracle 同义词Oracle synonym
转载请出自出处:http://eksliang.iteye.com/blog/2098861
1.什么是同义词
同义词是现有模式对象的一个别名。
概念性的东西,什么是模式呢?创建一个用户,就相应的创建了 一个模式。模式是指数据库对象,是对用户所创建的数据对象的总称。模式对象包括表、视图、索引、同义词、序列、过
- Ajax案例
gongmeitao
Ajaxjsp
数据库采用Sql Server2005
项目名称为:Ajax_Demo
1.com.demo.conn包
package com.demo.conn;
import java.sql.Connection;import java.sql.DriverManager;import java.sql.SQLException;
//获取数据库连接的类public class DBConnec
- ASP.NET中Request.RawUrl、Request.Url的区别
hvt
.netWebC#asp.nethovertree
如果访问的地址是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree%3C&n=myslider#zonemenu那么Request.Url.ToString() 的值是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree<&
- SVG 教程 (七)SVG 实例,SVG 参考手册
天梯梦
svg
SVG 实例 在线实例
下面的例子是把SVG代码直接嵌入到HTML代码中。
谷歌Chrome,火狐,Internet Explorer9,和Safari都支持。
注意:下面的例子将不会在Opera运行,即使Opera支持SVG - 它也不支持SVG在HTML代码中直接使用。 SVG 实例
SVG基本形状
一个圆
矩形
不透明矩形
一个矩形不透明2
一个带圆角矩
- 事务管理
luyulong
javaspring编程事务
事物管理
spring事物的好处
为不同的事物API提供了一致的编程模型
支持声明式事务管理
提供比大多数事务API更简单更易于使用的编程式事务管理API
整合spring的各种数据访问抽象
TransactionDefinition
定义了事务策略
int getIsolationLevel()得到当前事务的隔离级别
READ_COMMITTED
- 基础数据结构和算法十一:Red-black binary search tree
sunwinner
AlgorithmRed-black
The insertion algorithm for 2-3 trees just described is not difficult to understand; now, we will see that it is also not difficult to implement. We will consider a simple representation known
- centos同步时间
stunizhengjia
linux集群同步时间
做了集群,时间的同步就显得非常必要了。 以下是查到的如何做时间同步。 在CentOS 5不再区分客户端和服务器,只要配置了NTP,它就会提供NTP服务。 1)确认已经ntp程序包: # yum install ntp 2)配置时间源(默认就行,不需要修改) # vi /etc/ntp.conf server pool.ntp.o
- ITeye 9月技术图书有奖试读获奖名单公布
ITeye管理员
ITeye
ITeye携手博文视点举办的9月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。 9月试读活动回顾:http://webmaster.iteye.com/blog/2118112本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《NFC:Arduino、Andro