//图片路径
QString appPath = QCoreApplication::applicationDirPath();
QString imagePath = appPath + "/sun.png";
//读取图像
cv::Mat img = cv::imread(imagePath.toStdString()); //IMREAD_GRAYSCALE 灰度图 IMREAD_UNCHANGED 具有透明通道
if (img.empty()) {
qDebug()<< "Could not load image!\n";
return;
}
//创建窗口
cv::namedWindow("input", cv::WINDOW_AUTOSIZE);
//显示图像
cv::imshow("input", img);
//参数为0一直阻塞
cv::waitKey(0);
//销毁窗口
cv::destroyAllWindows();
//保存为png透明通道
vector<int>opts;
opts.push_back(IMWRITE_PAM_FORMAT_RGB_ALPHA);
imwrite("D:/img_bgra.png", img, opts);
//保存为单通道灰度图像
img = cv::imread(imagePath.toStdString(), IMREAD_GRAYSCALE);
vector<int> opts_gray;
opts_gray.push_back(IMWRITE_PAM_FORMAT_GRAYSCALE);
imwrite("D:/img_gray.png", img, opts_gray);
//保存为默认的彩色BGR图像
imwrite("D:/img_BGR.png", img);
//保存为png彩色压缩图像
img = imread(imagePath.toStdString(), IMREAD_ANYCOLOR);
vector<int> opts_png_anycolor;
opts_png_anycolor.push_back(IMWRITE_PAM_FORMAT_GRAYSCALE);
opts_png_anycolor.push_back(9);
imwrite("D:/img_png_anycolor.png", img, opts_png_anycolor);
//保存为JPG高压缩比图像
img = imread(imagePath.toStdString(), IMREAD_COLOR);
vector<int> opts_jpeg;
opts_jpeg.push_back(IMWRITE_JPEG_QUALITY);
opts_jpeg.push_back(50);
opts_jpeg.push_back(IMWRITE_JPEG_OPTIMIZE);
opts_jpeg.push_back(1);
imwrite("D:/img_jpeg.jpg", img, opts_jpeg);
//视频路径
QString appPath = QCoreApplication::applicationDirPath();
QString videoPath = appPath + "/vtest.avi";
cv::VideoCapture capture;
capture.open(videoPath.toStdString(),CAP_FFMPEG);
//从摄像头读取
//capture.open(0, CAP_DSHOW);
cv::Mat frame;
while (true) {
//读帧
bool ret = capture.read(frame);
if (!ret)
break;
imshow("frame", frame);
//添加帧处理 等待 100 毫秒,检查用户是否按下键盘上的按键
char c = waitKey(100);
//按下的是 ESC 键 (ASCII 值为 27),则跳出循环,停止播放视频
if (c == 27)
break;
}
waitKey(0);
destroyAllWindows();
//视频路径
QString appPath = QCoreApplication::applicationDirPath();
QString videoPath = appPath + "/vtest.avi";
cv::VideoCapture capture;
capture.open(videoPath.toStdString(),CAP_FFMPEG);
qDebug() << u8"高:" << capture.get(CAP_PROP_FRAME_HEIGHT);
qDebug() << u8"宽:" << capture.get(CAP_PROP_FRAME_WIDTH);
qDebug() << u8"帧率FPS:" << QString::number(capture.get(CAP_PROP_FPS));
qDebug() << u8"总帧率:" << capture.get(CAP_PROP_FRAME_COUNT);
//视频路径
QString appPath = QCoreApplication::applicationDirPath();
QString videoPath = appPath + "/vtest.avi";
cv::VideoCapture capture;
capture.open(videoPath.toStdString(), CAP_FFMPEG);
qDebug() << u8"高:" << capture.get(CAP_PROP_FRAME_HEIGHT);
qDebug() << u8"宽:" << capture.get(CAP_PROP_FRAME_WIDTH);
qDebug() << u8"帧率FPS:" << capture.get(CAP_PROP_FPS);
qDebug() << u8"总帧率:" << capture.get(CAP_PROP_FRAME_COUNT);
//保存视频路径
QString savevideoPath = appPath + "/output.avi";
cv::VideoWriter writer(savevideoPath.toStdString(), capture.get(CAP_PROP_FOURCC), capture.get(CAP_PROP_FPS), Size(capture.get(CAP_PROP_FRAME_WIDTH), capture.get(CAP_PROP_FRAME_HEIGHT)));
cv::Mat frame;
while (true) {
//读帧
bool ret = capture.read(frame);
if (!ret)
break;
imshow("frame", frame);
//添加帧处理
writer.write(frame);
//等待 100 毫秒,检查用户是否按下键盘上的按键
char c = waitKey(100);
//按下的是 ESC 键 (ASCII 值为 27),则跳出循环,停止播放视频
if (c == 27)
break;
}
capture.release();
writer.release();
waitKey(0);
destroyAllWindows();
for (int row = 0; row < h; row++)
{
for (int col = 0; col < w; col++)
{
if (dim == 1)//灰度图像
{
int pv = image.at<uchar>(row,col);//像素是字节类型
image.at<uchar>(row, col) = 255 - pv;
}
if (dim == 3)//彩色图像
{
Vec3b bgr = image.at<Vec3b>(row, col);
image.at<Vec3b>(row, col)[0] = 255 - bgr[0];
image.at<Vec3b>(row, col)[1] = 255 - bgr[1];
image.at<Vec3b>(row, col)[2] = 255 - bgr[2];
}
}
}
for (int row = 0; row < h; row++)
{
uchar* current_row = image.ptr<uchar>(row);
for (int col = 0; col < w; col++)
{
if (dim == 1)//灰度图像
{
int pv = *current_row;
*current_row++ = 255 - *current_row;
}
if (dim == 3)//彩色图像
{
*current_row++ = 255 - *current_row;
*current_row++ = 255 - *current_row;
*current_row++ = 255 - *current_row;
}
}
}
#include
using namespace cv;
int main() {
Mat image = imread("image.jpg");
if (image.empty()) {
std::cout << "无法加载图像" << std::endl;
return -1;
}
// 加法变换
Mat addResult;
add(image, Scalar(50, 50, 50), addResult); // 将像素值增加50
// 减法变换
Mat subtractResult;
subtract(image, Scalar(50, 50, 50), subtractResult); // 将像素值减去50
// 乘法变换
Mat multiplyResult;
multiply(image, Scalar(0.5, 0.5, 0.5), multiplyResult); // 将像素值乘以0.5
// 除法变换
Mat divideResult;
divide(image, Scalar(2.0, 2.0, 2.0), divideResult); // 将像素值除以2.0
imshow("Original Image", image);
imshow("Addition Result", addResult);
imshow("Subtraction Result", subtractResult);
imshow("Multiplication Result", multiplyResult);
imshow("Division Result", divideResult);
waitKey(0);
return 0;
}
Mat src, dst, m;
int lightness = 50;
static void on_track(int, void *)
{
m = Scalar(lightness, lightness, lightness);
//add(src,m,dst);
subtract(src, m, dst);
imshow("亮度调节", dst);
}
void on_pushButton_brightness_clicked()
{
namedWindow("亮度调节", WINDOW_AUTOSIZE);
QString appPath = QCoreApplication::applicationDirPath()+"/A.jpg";
src = cv::imread(appPath.toStdString());
dst = Mat::zeros(src.size(), src.type());
m = Mat::zeros(src.size(), src.type());
int max_value = 100;
createTrackbar("Value Bar:", "亮度调节", &lightness, max_value, on_track);
on_track(50, 0);
}
static void on_track(int b, void* user_data)
{
Mat image = *((Mat *)user_data);
Mat dst = Mat::zeros(image.size(), image.type());
Mat m = Mat::zeros(image.size(), image.type());
m = Scalar(b, b, b);
//add(image,m,dst);
subtract(image, m, dst);
imshow("亮度调节", dst);
}
void introduction::on_pushButton_brightness_clicked()
{
namedWindow("亮度调节", WINDOW_AUTOSIZE);
int lightness = 50;
int max_value = 100;
//img为已经读入的图像
createTrackbar("Value Bar:", "亮度调节", &lightness, max_value, on_track,(void*)(&img));
on_track(50, &img);
}
static void on_track_lightness(int b, void* user_data)
{
Mat image = *((Mat *)user_data);
if (image.empty())
return;
Mat dst = Mat::zeros(image.size(), image.type());
Mat m = Mat::zeros(image.size(), image.type());
addWeighted(image, 1.0, m, 0, b, dst);
imshow("亮度对比度调节", dst);
}
static void on_track_contrast(int b, void* user_data)
{
Mat image = *((Mat *)user_data);
Mat dst = Mat::zeros(image.size(), image.type());
Mat m = Mat::zeros(image.size(), image.type());
double contrast = b / 100.0;
addWeighted(image, contrast, m, 0.0, 0, dst);
imshow("亮度对比度调节", dst);
}
void brightness_demo()
{
namedWindow("亮度对比度调节", WINDOW_AUTOSIZE);
int lightness = 50;
int max_value = 100;
int contrast_value = 100;
createTrackbar("Value Bar:", "亮度对比度调节", &lightness, max_value, on_track_lightness,(void*)(&img));
createTrackbar("Constrast Bar:", "亮度对比度调节", &contrast_value, 200, on_track_contrast, (void*)(&img));
on_track_lightness(50, &img);
}
//图片路径
QString appPath = QCoreApplication::applicationDirPath();
imagePath = appPath + "/A.jpg";
//读取图像
img = cv::imread(imagePath.toStdString());
if (img.empty())
return;
cv::namedWindow("input", cv::WINDOW_AUTOSIZE);
//显示图像
cv::imshow("input", img);
Mat dst = Mat::zeros(img.size(),img.type());
while (true) {
char c = waitKey(100);
std::cout << c << std::endl;
if (c == 27)
break;
if (c == 49)//Key 1
{
cvtColor(img, dst, COLOR_BGR2GRAY);
}
if (c == 50)//Key 2
{
cvtColor(img, dst, COLOR_BGR2HSV);
}
if (c == 51)//Key 3
{
dst = Scalar(50, 50, 50);
add(img, dst, dst);
}
cv::imshow("input", dst);
}
//参数为0一直阻塞
cv::waitKey(0);
//销毁窗口
cv::destroyAllWindows();
//图片路径
QString appPath = QCoreApplication::applicationDirPath();
imagePath = appPath + "/A.jpg";
//读取图像
img = cv::imread(imagePath.toStdString());
if (img.empty())
return;
cv::namedWindow("input", cv::WINDOW_AUTOSIZE);
cv::Mat dst;
int color_map = COLORMAP_AUTUMN;
while (true)
{
int c = cv::waitKey(2000);
if (c == 27) {
break;
}
applyColorMap(img, dst, color_map%21);
color_map++;
cv::imshow("input", dst);
}
cv::waitKey(0);
cv::destroyAllWindows();
cv::Mat m1 = cv::Mat::zeros(Size(256, 256), CV_8UC3);
cv::Mat m2 = cv::Mat::zeros(Size(256, 256), CV_8UC3);
rectangle(m1, Rect(100, 100, 80, 80),Scalar(255,255,0),-1,LINE_8,0);
rectangle(m2, Rect(150, 150, 80, 80), Scalar(0, 255, 255), -1, LINE_8, 0);
imshow("m1", m1);
imshow("m2", m2);
Mat dst;
bitwise_and(m1, m2, dst);
imshow("与操作", dst);
bitwise_or(m1, m2, dst);
imshow("或操作", dst);
QString appPath = QCoreApplication::applicationDirPath();
imagePath = appPath + "/A.jpg";
img = cv::imread(imagePath.toStdString());
if (img.empty())
return;
bitwise_not(img, dst);
imshow("非操作", dst);
bitwise_xor(m1, m2, dst);
imshow("异或操作", dst);
cv::waitKey(0);
cv::destroyAllWindows();
QString appPath = QCoreApplication::applicationDirPath();
imagePath = appPath + "/A.jpg";
img = cv::imread(imagePath.toStdString());
if (img.empty())
return;
std::vector<Mat> mv;
cv::split(img, mv);
imshow("B", mv[0]);
imshow("G", mv[1]);
imshow("R", mv[2]);
cv::Mat dst;
mv[1] = 0;
mv[2] = 0;
cv::merge(mv, dst);
imshow("Blue", dst);
int from_to[] = { 0,2,1,1,2,0 };
cv::mixChannels(&img, 1, &dst, 1, from_to,3);
imshow("通道混合", dst);
QString appPath = QCoreApplication::applicationDirPath();
imagePath = appPath + "/sun.png";
img = cv::imread(imagePath.toStdString());
if (img.empty())
return;
imshow("img", img);
cv::Mat hsv;
cv::cvtColor(img,hsv,COLOR_BGR2HSV);
cv::Mat mask;
inRange(hsv, Scalar(0,0,221), Scalar(180,30,255), mask);
Mat redback = Mat::zeros(img.size(), img.type());
redback = Scalar(40, 40, 200);
bitwise_not(mask, mask);
imshow("mask", mask);
img.copyTo(redback, mask);
imshow("roi", redback);
QString appPath = QCoreApplication::applicationDirPath();
imagePath = appPath + "/A.jpg";
img = cv::imread(imagePath.toStdString());
if (img.empty())
return;
double minv, maxv;
Point minLoc, maxLoc;
std::vector<Mat> mv;
split(img, mv);
for (int i = 0; i < mv.size(); i++)
{
//图像必须单通道
minMaxLoc(mv[i], &minv, &maxv, &minLoc, &maxLoc, cv::Mat());
std::cout << "channel" << i << "min value" << minv << "max value" << maxv<<std::endl ;
}
Mat mean, stddev;
//计算均值方差
meanStdDev(img,mean,stddev);
std::cout << "mean" << mean << "stddev" << stddev << std::endl;
QString appPath = QCoreApplication::applicationDirPath();
imagePath = appPath + "/A.jpg";
img = cv::imread(imagePath.toStdString());
if (img.empty())
return;
Mat bg = Mat::zeros(img.size(),img.type());
Rect rect;
rect.x = 200;
rect.y = 200;
rect.width = 100;
rect.height = 50;
rectangle(bg, rect, Scalar(0, 0, 255), -1,8,0);
circle(bg, Point(50, 100), 15, Scalar(255, 0, 0), 2);
line(bg, Point(100, 100), Point(100, 200), Scalar(0, 255, 0), 2, LINE_AA, 0);
RotatedRect rrt(Point(200, 200),Size(100, 200), 90.0);
ellipse(bg, rrt, Scalar(0, 255, 255), 2, 8);
Mat dst;
addWeighted(img, 0.7,bg,0.3,0, dst);
imshow("Draw", dst);
Mat bg = Mat::zeros(Size(512,512), CV_8UC3);
int w = bg.cols;
int h = bg.rows;
RNG rng(12345);
while (true)
{
int c = cv::waitKey(10);
if (c == 27) {
break;
}
int x1 = rng.uniform(0, w);
int y1 = rng.uniform(0, h);
int x2 = rng.uniform(0, w);
int y2 = rng.uniform(0, h);
bg = Scalar(0, 0, 0);
line(bg, Point(x1, y1), Point(x2, y2), Scalar(rng.uniform(0,255), rng.uniform(0, 255), rng.uniform(0, 255)), 2, LINE_AA, 0);
imshow("Draw_random", bg);
}
Mat bg = Mat::zeros(Size(512, 512), CV_8UC3);
Point p1(100, 100);
Point p2(350, 100);
Point p3(450, 280);
Point p4(320, 450);
Point p5(80, 400);
std::vector<Point> pts;
pts.push_back(p1);
pts.push_back(p2);
pts.push_back(p3);
pts.push_back(p4);
pts.push_back(p5);
polylines(bg, pts, true, Scalar(0, 0, 255), 2, 8, 0);
fillPoly(bg, pts, Scalar(0, 255, 255),8, 0);
std::vector<std::vector<Point>> contours;
contours.push_back(pts);
drawContours(bg, contours, -1, Scalar(255, 0, 255), 2);
imshow("Draw_polygon", bg);
Point sp(-1, -1);
Point ep(-1, -1);
Mat temp;
static void on_draw(int event, int x, int y, int flags,void *user_data)
{
Mat image = *((Mat *)user_data);
if (event == EVENT_LBUTTONDOWN)
{
sp.x = x;
sp.y = y;
}
else if (event == EVENT_LBUTTONUP)
{
ep.x = x;
ep.y = y;
int dx = ep.x - sp.x;
int dy = ep.y - sp.y;
if (dx > 0 && dy > 0)
{
Rect rect(sp.x,sp.y,dx,dy);
rectangle(image, rect, Scalar(0, 0, 255), 2, 8, 0);
imshow("mouse_draw", image);
imshow("roi", image(rect));
sp.x = -1;
sp.y = -1;
}
}
else if (event == EVENT_MOUSEMOVE)
{
if (sp.x > 0 && sp.y > 0)
{
ep.x = x;
ep.y = y;
int dx = ep.x - sp.x;
int dy = ep.y - sp.y;
if (dx > 0 && dy > 0)
{
temp.copyTo(image);
Rect rect(sp.x, sp.y, dx, dy);
rectangle(image, rect, Scalar(0, 0, 255), 2, 8, 0);
imshow("mouse_draw", image);
}
}
}
}
void mouse_demo()
{
QString appPath = QCoreApplication::applicationDirPath();
imagePath = appPath + "/A.jpg";
img = cv::imread(imagePath.toStdString());
if (img.empty())
return;
temp = img.clone();
namedWindow("mouse_draw", WINDOW_AUTOSIZE);
setMouseCallback("mouse_draw", on_draw,(void*)(&img));
imshow("mouse_draw", img);
}
QString appPath = QCoreApplication::applicationDirPath();
imagePath = appPath + "/A.jpg";
img = cv::imread(imagePath.toStdString());
if (img.empty())
return;
Mat dst;
img.convertTo(img, CV_32F);
normalize(img, dst, 1.0, 0, NORM_MINMAX);
imshow("normalize",dst);
QString appPath = QCoreApplication::applicationDirPath();
imagePath = appPath + "/A.jpg";
img = cv::imread(imagePath.toStdString());
if (img.empty())
return;
Mat zoomin, zoomout;
int h = img.rows;
int w = img.cols;
cv::resize(img, zoomin, Size(w/2,h/2),0,0,INTER_LINEAR);
imshow("zoomin", zoomin);
cv::resize(img, zoomout, Size(w * 2, h * 2), 0, 0, INTER_LINEAR);
imshow("zoomout", zoomout);
QString appPath = QCoreApplication::applicationDirPath();
imagePath = appPath + "/A.jpg";
img = cv::imread(imagePath.toStdString());
if (img.empty())
return;
Mat dst;
flip(img, dst, 0);//上下翻转
imshow("flip0", dst);
flip(img, dst, 1);//左右翻转
imshow("flip1", dst);
flip(img, dst, -1);//180°旋转
imshow("flip-1", dst);
int h = img.rows;
int w = img.cols;
Mat M = getRotationMatrix2D(Point2f(w / 2, h / 2), 45, 1.0);
double cos = abs(M.at<double>(0, 0));
double sin = abs(M.at<double>(0, 1));
int nw = cos * w + sin * h;
int nh = sin * w + cos * h;
M.at<double>(0, 2) = M.at<double>(0, 2) + (nw / 2 - w / 2);
M.at<double>(1, 2) = M.at<double>(1, 2) + (nh / 2 - h / 2);
warpAffine(img, dst, M, Size(nw,nh),INTER_LINEAR,0,Scalar(255,0,0));
imshow("rotate", dst);
QString appPath = QCoreApplication::applicationDirPath();
imagePath = appPath + "/A.jpg";
img = cv::imread(imagePath.toStdString());
if (img.empty())
return;
// 三通道分离
std::vector<Mat> bgr_plane;
split(img, bgr_plane);
// 定义参数变量
const int channels[1] = { 0 };
const int bins[1] = { 256 };
float hranges[2] = { 0,255 };
const float* ranges[1] = { hranges };
Mat b_hist;
Mat g_hist;
Mat r_hist;
// 计算Blue, Green, Red通道的直方图
calcHist(&bgr_plane[0], 1, 0, Mat(), b_hist, 1, bins, ranges);
calcHist(&bgr_plane[1], 1, 0, Mat(), g_hist, 1, bins, ranges);
calcHist(&bgr_plane[2], 1, 0, Mat(), r_hist, 1, bins, ranges);
// 显示直方图
int hist_w = 512;
int hist_h = 400;
int bin_w = cvRound((double)hist_w / bins[0]);
Mat histImage = Mat::zeros(hist_h, hist_w, CV_8UC3);
// 归一化直方图数据
normalize(b_hist, b_hist, 0, histImage.rows, NORM_MINMAX, -1, Mat());
normalize(g_hist, g_hist, 0, histImage.rows, NORM_MINMAX, -1, Mat());
normalize(r_hist, r_hist, 0, histImage.rows, NORM_MINMAX, -1, Mat());
// 绘制直方图曲线
for (int i = 1; i < bins[0]; i++) {
line(histImage, Point(bin_w*(i - 1), hist_h - cvRound(b_hist.at<float>(i - 1))),
Point(bin_w*(i), hist_h - cvRound(b_hist.at<float>(i))), Scalar(255, 0, 0), 2, 8, 0);
line(histImage, Point(bin_w*(i - 1), hist_h - cvRound(g_hist.at<float>(i - 1))),
Point(bin_w*(i), hist_h - cvRound(g_hist.at<float>(i))), Scalar(0, 255, 0), 2, 8, 0);
line(histImage, Point(bin_w*(i - 1), hist_h - cvRound(r_hist.at<float>(i - 1))),
Point(bin_w*(i), hist_h - cvRound(r_hist.at<float>(i))), Scalar(0, 0, 255), 2, 8, 0);
}
// 显示直方图
namedWindow("Histogram Demo", WINDOW_AUTOSIZE);
imshow("Histogram Demo", histImage);
QString appPath = QCoreApplication::applicationDirPath();
imagePath = appPath + "/A.jpg";
img = cv::imread(imagePath.toStdString());
if (img.empty())
return;
// 2D 直方图
Mat hsv, hs_hist;
cvtColor(img, hsv, COLOR_BGR2HSV);
int hbins = 30, sbins = 32;
int hist_bins[] = { hbins, sbins };
float h_range[] = { 0, 180 };
float s_range[] = { 0, 256 };
const float* hs_ranges[] = { h_range, s_range };
int hs_channels[] = { 0, 1 };
calcHist(&hsv, 1, hs_channels, Mat(), hs_hist, 2, hist_bins, hs_ranges, true, false);
double maxVal = 0;
minMaxLoc(hs_hist, 0, &maxVal, 0, 0);
int scale = 10;
Mat hist2d_image = Mat::zeros(sbins*scale, hbins * scale, CV_8UC3);
for (int h = 0; h < hbins; h++) {
for (int s = 0; s < sbins; s++)
{
float binVal = hs_hist.at<float>(h, s);
int intensity = cvRound(binVal * 255 / maxVal);
rectangle(hist2d_image, Point(h*scale, s*scale),
Point((h + 1)*scale - 1, (s + 1)*scale - 1),
Scalar::all(intensity),
-1);
}
}
applyColorMap(hist2d_image, hist2d_image, COLORMAP_JET);
imshow("H-S Histogram", hist2d_image);
imwrite("D:/hist_2d.png", hist2d_image);
QString appPath = QCoreApplication::applicationDirPath();
imagePath = appPath + "/A.jpg";
img = cv::imread(imagePath.toStdString());
if (img.empty())
return;
Mat gray;
cvtColor(img, gray, COLOR_BGR2GRAY);
imshow("灰度图像", gray);
Mat dst;
equalizeHist(gray, dst);//只支持单通道灰度图像
imshow("直方图均衡化演示", dst);
QString appPath = QCoreApplication::applicationDirPath();
imagePath = appPath + "/A.jpg";
img = cv::imread(imagePath.toStdString());
if (img.empty())
return;
Mat gray;
cvtColor(img, gray, COLOR_BGR2GRAY);
imshow("灰度图像", gray);
Mat dst;
equalizeHist(gray, dst);//只支持单通道灰度图像
imshow("直方图均衡化演示", dst);
QString appPath = QCoreApplication::applicationDirPath();
imagePath = appPath + "/A.jpg";
img = cv::imread(imagePath.toStdString());
if (img.empty())
return;
Mat dst;
blur(img, dst, Size(15, 15), Point(-1, -1));
imshow("图像卷积", dst);
QString appPath = QCoreApplication::applicationDirPath();
imagePath = appPath + "/A.jpg";
img = cv::imread(imagePath.toStdString());
if (img.empty())
return;
Mat dst;
blur(img, dst, Size(15, 15), Point(-1, -1));
imshow("图像卷积", dst);
QString appPath = QCoreApplication::applicationDirPath();
imagePath = appPath + "/A.jpg";
img = cv::imread(imagePath.toStdString());
if (img.empty())
return;
Mat dst;
GaussianBlur(img, dst, Size(0, 0), 15);//ksize正数奇数
imshow("高斯模糊", dst);
QString appPath = QCoreApplication::applicationDirPath();
imagePath = appPath + "/A.jpg";
img = cv::imread(imagePath.toStdString());
if (img.empty())
return;
Mat dst;
bilateralFilter(img, dst, 0, 100, 10);
imshow("双边模糊", dst);
std::string root_dir = "D:/opencv/sources/samples/dnn/face_detector/";
dnn::Net net = dnn::readNetFromTensorflow(root_dir + "opencv_face_detector_uint8.pb", root_dir + "opencv_face_detector.pbtxt");
//VideoCapture capture("D:/code/opencv_tutorial_data/images/example_dsh.mp4");
VideoCapture capture(0, CAP_DSHOW);
Mat frame;
while (true) {
capture.read(frame);
if (frame.empty()) {
break;
}
Mat blob = dnn::blobFromImage(frame, 1.0, Size(300, 300), Scalar(104, 177, 123), false, false);
net.setInput(blob);// NCHW
Mat probs = net.forward();
Mat detectionMat(probs.size[2], probs.size[3], CV_32F, probs.ptr<float>());
// 解析结果
for (int i = 0; i < detectionMat.rows; i++) {
float confidence = detectionMat.at<float>(i, 2);
if (confidence > 0.5) {
int x1 = static_cast<int>(detectionMat.at<float>(i, 3)*frame.cols);
int y1 = static_cast<int>(detectionMat.at<float>(i, 4)*frame.rows);
int x2 = static_cast<int>(detectionMat.at<float>(i, 5)*frame.cols);
int y2 = static_cast<int>(detectionMat.at<float>(i, 6)*frame.rows);
Rect box(x1, y1, x2 - x1, y2 - y1);
rectangle(frame, box, Scalar(0, 0, 255), 2, 8, 0);
}
}
imshow("人脸检测演示", frame);
int c = waitKey(1);
if (c == 27) { // 退出
break;
}
}
源码:https://github.com/YouyangHan/openCV_study