OpenCV基础demo

一、读取图像


  //图片路径
	QString appPath = QCoreApplication::applicationDirPath();
	QString imagePath = appPath + "/sun.png";

	//读取图像
	cv::Mat img = cv::imread(imagePath.toStdString()); //IMREAD_GRAYSCALE 灰度图 IMREAD_UNCHANGED 具有透明通道

	if (img.empty()) {
		qDebug()<< "Could not load image!\n";
		return;
	}

	//创建窗口
	cv::namedWindow("input", cv::WINDOW_AUTOSIZE);
	//显示图像
	cv::imshow("input", img);
	//参数为0一直阻塞
	cv::waitKey(0);
	//销毁窗口
	cv::destroyAllWindows();

二、保存图像


	//保存为png透明通道
	vector<int>opts;
	opts.push_back(IMWRITE_PAM_FORMAT_RGB_ALPHA);
	imwrite("D:/img_bgra.png", img, opts);


	//保存为单通道灰度图像
	img = cv::imread(imagePath.toStdString(), IMREAD_GRAYSCALE);
	vector<int> opts_gray;
	opts_gray.push_back(IMWRITE_PAM_FORMAT_GRAYSCALE);
	imwrite("D:/img_gray.png", img, opts_gray);

	//保存为默认的彩色BGR图像
	imwrite("D:/img_BGR.png", img);

	//保存为png彩色压缩图像
	img = imread(imagePath.toStdString(), IMREAD_ANYCOLOR);
	vector<int> opts_png_anycolor;
	opts_png_anycolor.push_back(IMWRITE_PAM_FORMAT_GRAYSCALE);
	opts_png_anycolor.push_back(9);
	imwrite("D:/img_png_anycolor.png", img, opts_png_anycolor);

	//保存为JPG高压缩比图像
	img = imread(imagePath.toStdString(), IMREAD_COLOR);
	vector<int> opts_jpeg;
	opts_jpeg.push_back(IMWRITE_JPEG_QUALITY);
	opts_jpeg.push_back(50);
	opts_jpeg.push_back(IMWRITE_JPEG_OPTIMIZE);
	opts_jpeg.push_back(1);
	imwrite("D:/img_jpeg.jpg", img, opts_jpeg);

三、加载视频

	//视频路径
	QString appPath = QCoreApplication::applicationDirPath();
	QString videoPath = appPath + "/vtest.avi";
	cv::VideoCapture capture;
	capture.open(videoPath.toStdString(),CAP_FFMPEG);
	//从摄像头读取
	//capture.open(0, CAP_DSHOW);

	cv::Mat frame;
	while (true) {
		//读帧
		bool ret = capture.read(frame);
		if (!ret)
			break;
		imshow("frame", frame);
		//添加帧处理 等待 100 毫秒,检查用户是否按下键盘上的按键
		char c = waitKey(100);
		//按下的是 ESC 键 (ASCII 值为 27),则跳出循环,停止播放视频
		if (c == 27)
			break;
	}
	waitKey(0);
	destroyAllWindows();

四、获取视频属性

	//视频路径
	QString appPath = QCoreApplication::applicationDirPath();
	QString videoPath = appPath + "/vtest.avi";
	cv::VideoCapture capture;
	capture.open(videoPath.toStdString(),CAP_FFMPEG);

	qDebug() << u8"高:" << capture.get(CAP_PROP_FRAME_HEIGHT);
	qDebug() << u8"宽:" << capture.get(CAP_PROP_FRAME_WIDTH);
	qDebug() << u8"帧率FPS:" << QString::number(capture.get(CAP_PROP_FPS));
	qDebug() << u8"总帧率:" << capture.get(CAP_PROP_FRAME_COUNT);

五、保存视频

	//视频路径
	QString appPath = QCoreApplication::applicationDirPath();
	QString videoPath = appPath + "/vtest.avi";
	cv::VideoCapture capture;
	capture.open(videoPath.toStdString(), CAP_FFMPEG);


	qDebug() << u8"高:" << capture.get(CAP_PROP_FRAME_HEIGHT);
	qDebug() << u8"宽:" << capture.get(CAP_PROP_FRAME_WIDTH);
	qDebug() << u8"帧率FPS:" << capture.get(CAP_PROP_FPS);
	qDebug() << u8"总帧率:" << capture.get(CAP_PROP_FRAME_COUNT);

	//保存视频路径
	QString savevideoPath = appPath + "/output.avi";

	cv::VideoWriter writer(savevideoPath.toStdString(), capture.get(CAP_PROP_FOURCC), capture.get(CAP_PROP_FPS), Size(capture.get(CAP_PROP_FRAME_WIDTH), capture.get(CAP_PROP_FRAME_HEIGHT)));

	cv::Mat frame;
	while (true) {
		//读帧
		bool ret = capture.read(frame);
		if (!ret)
			break;
		imshow("frame", frame);
		//添加帧处理 
		writer.write(frame);
		//等待 100 毫秒,检查用户是否按下键盘上的按键
		char c = waitKey(100);
		//按下的是 ESC 键 (ASCII 值为 27),则跳出循环,停止播放视频
		if (c == 27)
			break;
	}
	capture.release();
	writer.release();
	waitKey(0);
	destroyAllWindows();

六、Mat遍历

  1. 数组下标
for (int row = 0; row < h; row++)
  {
	for (int col = 0; col < w; col++)
	{
	  if (dim == 1)//灰度图像
	  {
		int pv = image.at<uchar>(row,col);//像素是字节类型
		image.at<uchar>(row, col) = 255 - pv;
	  }
	  if (dim == 3)//彩色图像
	  {
		Vec3b bgr = image.at<Vec3b>(row, col);
		image.at<Vec3b>(row, col)[0] = 255 - bgr[0];
		image.at<Vec3b>(row, col)[1] = 255 - bgr[1];
		image.at<Vec3b>(row, col)[2] = 255 - bgr[2];
	  }
	}
  }


  1. 指针
for (int row = 0; row < h; row++)
{
	uchar* current_row = image.ptr<uchar>(row);
	for (int col = 0; col < w; col++)
	{
	  if (dim == 1)//灰度图像
	  {
		int pv = *current_row;
		*current_row++ = 255 - *current_row;

	  }
	  if (dim == 3)//彩色图像
	  {
		*current_row++ = 255 - *current_row;
		*current_row++ = 255 - *current_row;
		*current_row++ = 255 - *current_row;
	  }
	}
}


七、Mat加减乘除

#include 

using namespace cv;

int main() {
    Mat image = imread("image.jpg");

    if (image.empty()) {
        std::cout << "无法加载图像" << std::endl;
        return -1;
    }

    // 加法变换
    Mat addResult;
    add(image, Scalar(50, 50, 50), addResult); // 将像素值增加50

    // 减法变换
    Mat subtractResult;
    subtract(image, Scalar(50, 50, 50), subtractResult); // 将像素值减去50

    // 乘法变换
    Mat multiplyResult;
    multiply(image, Scalar(0.5, 0.5, 0.5), multiplyResult); // 将像素值乘以0.5

    // 除法变换
    Mat divideResult;
    divide(image, Scalar(2.0, 2.0, 2.0), divideResult); // 将像素值除以2.0

    imshow("Original Image", image);
    imshow("Addition Result", addResult);
    imshow("Subtraction Result", subtractResult);
    imshow("Multiplication Result", multiplyResult);
    imshow("Division Result", divideResult);

    waitKey(0);

    return 0;
}

七、亮度调节demo

Mat src, dst, m;
int lightness = 50;

static void on_track(int, void *)
{
	m = Scalar(lightness, lightness, lightness);
	//add(src,m,dst);
	subtract(src, m, dst);
	imshow("亮度调节", dst);
}

void on_pushButton_brightness_clicked()
{
	namedWindow("亮度调节", WINDOW_AUTOSIZE);

	QString appPath = QCoreApplication::applicationDirPath()+"/A.jpg";
	src = cv::imread(appPath.toStdString());
	dst = Mat::zeros(src.size(), src.type());
	m = Mat::zeros(src.size(), src.type());

	int max_value = 100;
	

	createTrackbar("Value Bar:", "亮度调节", &lightness, max_value, on_track);
	on_track(50, 0);
}

static void on_track(int b, void* user_data)
{
	Mat image = *((Mat *)user_data);
	Mat dst = Mat::zeros(image.size(), image.type());
	Mat m = Mat::zeros(image.size(), image.type());
	m = Scalar(b, b, b);
	//add(image,m,dst);
	subtract(image, m, dst);
	imshow("亮度调节", dst);
}

void introduction::on_pushButton_brightness_clicked()
{
	namedWindow("亮度调节", WINDOW_AUTOSIZE);
	
	int lightness = 50;
	int max_value = 100;

	//img为已经读入的图像
	createTrackbar("Value Bar:", "亮度调节", &lightness, max_value, on_track,(void*)(&img));
	on_track(50, &img);
}

八、亮度对比度调节

static void on_track_lightness(int b, void* user_data)
{
	Mat image = *((Mat *)user_data);
	if (image.empty())
		return;
	Mat dst = Mat::zeros(image.size(), image.type());
	Mat m = Mat::zeros(image.size(), image.type());

	addWeighted(image, 1.0, m, 0, b, dst);

	imshow("亮度对比度调节", dst);
}

static void on_track_contrast(int b, void* user_data)
{
	Mat image = *((Mat *)user_data);
	Mat dst = Mat::zeros(image.size(), image.type());
	Mat m = Mat::zeros(image.size(), image.type());

	double contrast = b / 100.0;
	addWeighted(image, contrast, m, 0.0, 0, dst);

	imshow("亮度对比度调节", dst);
}

void brightness_demo()
{
	namedWindow("亮度对比度调节", WINDOW_AUTOSIZE);
	
	int lightness = 50;
	int max_value = 100;

	int contrast_value = 100;

	createTrackbar("Value Bar:", "亮度对比度调节", &lightness, max_value, on_track_lightness,(void*)(&img));
	createTrackbar("Constrast Bar:", "亮度对比度调节", &contrast_value, 200, on_track_contrast, (void*)(&img));
	on_track_lightness(50, &img);
}

九、键盘响应操作

  //图片路径
  QString appPath = QCoreApplication::applicationDirPath();
  imagePath = appPath + "/A.jpg";

  //读取图像
  img = cv::imread(imagePath.toStdString());
  if (img.empty())
    return;

  cv::namedWindow("input", cv::WINDOW_AUTOSIZE);
  //显示图像
  cv::imshow("input", img);

  Mat dst = Mat::zeros(img.size(),img.type());
  while (true) {
    char c = waitKey(100);
    std::cout << c << std::endl;
    if (c == 27)
      break;
    if (c == 49)//Key 1
    {
      cvtColor(img, dst, COLOR_BGR2GRAY);
    }
    if (c == 50)//Key 2
    {
      cvtColor(img, dst, COLOR_BGR2HSV);
    }
    if (c == 51)//Key 3
    {
      dst = Scalar(50, 50, 50);
      add(img, dst, dst);
    }
    cv::imshow("input", dst);
  }

  //参数为0一直阻塞
  cv::waitKey(0);
  //销毁窗口
  cv::destroyAllWindows();

十、OpenCV自带颜色表

  //图片路径
  QString appPath = QCoreApplication::applicationDirPath();
  imagePath = appPath + "/A.jpg";

  //读取图像
  img = cv::imread(imagePath.toStdString());
  if (img.empty())
    return;

  cv::namedWindow("input", cv::WINDOW_AUTOSIZE);

  cv::Mat dst;

  int color_map = COLORMAP_AUTUMN;
  while (true)
  {
    int c = cv::waitKey(2000);
    if (c == 27) {
      break;
    }
    applyColorMap(img, dst, color_map%21);
    color_map++;
    cv::imshow("input", dst);
  }

  cv::waitKey(0);
  cv::destroyAllWindows();

十一、图像像素逻辑操作

  cv::Mat m1 = cv::Mat::zeros(Size(256, 256), CV_8UC3);
  cv::Mat m2 = cv::Mat::zeros(Size(256, 256), CV_8UC3);

  rectangle(m1, Rect(100, 100, 80, 80),Scalar(255,255,0),-1,LINE_8,0);
  rectangle(m2, Rect(150, 150, 80, 80), Scalar(0, 255, 255), -1, LINE_8, 0);

  imshow("m1", m1);
  imshow("m2", m2);

  Mat dst;
  bitwise_and(m1, m2, dst);
  imshow("与操作", dst);

  bitwise_or(m1, m2, dst);
  imshow("或操作", dst);

  QString appPath = QCoreApplication::applicationDirPath();
  imagePath = appPath + "/A.jpg";
  img = cv::imread(imagePath.toStdString());
  if (img.empty())
    return;
  bitwise_not(img, dst);
  imshow("非操作", dst);

  bitwise_xor(m1, m2, dst);
  imshow("异或操作", dst);

  cv::waitKey(0);
  cv::destroyAllWindows();

十二、通道分离、合并、混和

	QString appPath = QCoreApplication::applicationDirPath();
	imagePath = appPath + "/A.jpg";
	img = cv::imread(imagePath.toStdString());
	if (img.empty())
		return;

	std::vector<Mat> mv;
	cv::split(img, mv);

	imshow("B", mv[0]);
	imshow("G", mv[1]);
	imshow("R", mv[2]);

	cv::Mat dst;
	mv[1] = 0;
	mv[2] = 0;

	cv::merge(mv, dst);
	imshow("Blue", dst);


	int from_to[] = { 0,2,1,1,2,0 };
	cv::mixChannels(&img, 1, &dst, 1, from_to,3);
	imshow("通道混合", dst);

十三、图像色彩空间转换

	QString appPath = QCoreApplication::applicationDirPath();
	imagePath = appPath + "/sun.png";
	img = cv::imread(imagePath.toStdString());
	if (img.empty())
		return;
	imshow("img", img);
	cv::Mat hsv;
	cv::cvtColor(img,hsv,COLOR_BGR2HSV);

	cv::Mat mask;
	inRange(hsv, Scalar(0,0,221), Scalar(180,30,255), mask);

	Mat redback = Mat::zeros(img.size(), img.type());
	redback = Scalar(40, 40, 200);
	bitwise_not(mask, mask);

	imshow("mask", mask);

	img.copyTo(redback, mask);

	imshow("roi", redback);

十四、图像像素值统计

  QString appPath = QCoreApplication::applicationDirPath();
  imagePath = appPath + "/A.jpg";
  img = cv::imread(imagePath.toStdString());
  if (img.empty())
    return;

  double minv, maxv;
  Point minLoc, maxLoc;

  std::vector<Mat> mv;
  split(img, mv);
  for (int i = 0; i < mv.size(); i++)
  {
    //图像必须单通道
    minMaxLoc(mv[i], &minv, &maxv, &minLoc, &maxLoc, cv::Mat());
    std::cout << "channel" << i << "min value" << minv << "max value" << maxv<<std::endl ;
  }

  Mat mean, stddev;
  //计算均值方差
  meanStdDev(img,mean,stddev);
  std::cout << "mean" << mean << "stddev" << stddev << std::endl;

十五、图像几何形状绘制

  QString appPath = QCoreApplication::applicationDirPath();
  imagePath = appPath + "/A.jpg";
  img = cv::imread(imagePath.toStdString());
  if (img.empty())
    return;

  Mat bg = Mat::zeros(img.size(),img.type());

  Rect rect;
  rect.x = 200;
  rect.y = 200;
  rect.width = 100;
  rect.height = 50;
  rectangle(bg, rect, Scalar(0, 0, 255), -1,8,0);
  circle(bg, Point(50, 100), 15, Scalar(255, 0, 0), 2);
  line(bg, Point(100, 100), Point(100, 200), Scalar(0, 255, 0), 2, LINE_AA, 0);
  RotatedRect rrt(Point(200, 200),Size(100, 200), 90.0);
  ellipse(bg, rrt, Scalar(0, 255, 255), 2, 8);

  Mat dst;
  addWeighted(img, 0.7,bg,0.3,0, dst);
  imshow("Draw", dst);

十六、随机数与随机颜色绘制

  Mat bg = Mat::zeros(Size(512,512), CV_8UC3);
  int w = bg.cols;
  int h = bg.rows;
  RNG rng(12345);
  while (true)
  {
    int c = cv::waitKey(10);
    if (c == 27) {
      break;
    }
    int x1 = rng.uniform(0, w);
    int y1 = rng.uniform(0, h);
    int x2 = rng.uniform(0, w);
    int y2 = rng.uniform(0, h);
    bg = Scalar(0, 0, 0);
    line(bg, Point(x1, y1), Point(x2, y2), Scalar(rng.uniform(0,255), rng.uniform(0, 255), rng.uniform(0, 255)), 2, LINE_AA, 0);
    imshow("Draw_random", bg);
  }

十七、多边形填充与绘制

  Mat bg = Mat::zeros(Size(512, 512), CV_8UC3);
  Point p1(100, 100);
  Point p2(350, 100);
  Point p3(450, 280);
  Point p4(320, 450);
  Point p5(80, 400);
  std::vector<Point> pts;
  pts.push_back(p1);
  pts.push_back(p2);
  pts.push_back(p3);
  pts.push_back(p4);
  pts.push_back(p5);

  polylines(bg, pts, true, Scalar(0, 0, 255), 2, 8, 0);
  fillPoly(bg, pts, Scalar(0, 255, 255),8, 0);

  std::vector<std::vector<Point>> contours;
  contours.push_back(pts);
  drawContours(bg, contours, -1, Scalar(255, 0, 255), 2);

  imshow("Draw_polygon", bg);

十八、鼠标操作(画红色方框截取图像)

Point sp(-1, -1);
Point ep(-1, -1);
Mat temp;
static void on_draw(int event, int x, int y, int flags,void *user_data)
{
  Mat image = *((Mat *)user_data);
  if (event == EVENT_LBUTTONDOWN)
  {
    sp.x = x;
    sp.y = y;
  }
  else if (event == EVENT_LBUTTONUP)
  {
    ep.x = x;
    ep.y = y;
    int dx = ep.x - sp.x;
    int dy = ep.y - sp.y;
    if (dx > 0 && dy > 0)
    {
      Rect rect(sp.x,sp.y,dx,dy);
      rectangle(image, rect, Scalar(0, 0, 255), 2, 8, 0);
      imshow("mouse_draw", image);
      imshow("roi", image(rect));
      sp.x = -1;
      sp.y = -1;
    }
  }
  else if (event == EVENT_MOUSEMOVE)
  {
    if (sp.x > 0 && sp.y > 0)
    {
      ep.x = x;
      ep.y = y;
      int dx = ep.x - sp.x;
      int dy = ep.y - sp.y;
      if (dx > 0 && dy > 0)
      {
        temp.copyTo(image);

        Rect rect(sp.x, sp.y, dx, dy);
        rectangle(image, rect, Scalar(0, 0, 255), 2, 8, 0);
        imshow("mouse_draw", image);
      }
    }
  }
}

void mouse_demo()
{
  QString appPath = QCoreApplication::applicationDirPath();
  imagePath = appPath + "/A.jpg";
  img = cv::imread(imagePath.toStdString());
  if (img.empty())
    return;
  temp = img.clone();
  namedWindow("mouse_draw", WINDOW_AUTOSIZE);
  setMouseCallback("mouse_draw", on_draw,(void*)(&img));

  imshow("mouse_draw", img);
}

十九、图像归一化


  QString appPath = QCoreApplication::applicationDirPath();
	imagePath = appPath + "/A.jpg";
	img = cv::imread(imagePath.toStdString());
	if (img.empty())
		return;

	Mat dst;
	img.convertTo(img, CV_32F);

	normalize(img, dst, 1.0, 0, NORM_MINMAX);

	imshow("normalize",dst);

二十、图像缩放

  QString appPath = QCoreApplication::applicationDirPath();
	imagePath = appPath + "/A.jpg";
	img = cv::imread(imagePath.toStdString());
	if (img.empty())
		return;

	Mat zoomin, zoomout;
	int h = img.rows;
	int w = img.cols;

	cv::resize(img, zoomin, Size(w/2,h/2),0,0,INTER_LINEAR);
	imshow("zoomin", zoomin);

	cv::resize(img, zoomout, Size(w * 2, h * 2), 0, 0, INTER_LINEAR);
	imshow("zoomout", zoomout);

二十一、图像翻转

  QString appPath = QCoreApplication::applicationDirPath();
	imagePath = appPath + "/A.jpg";
	img = cv::imread(imagePath.toStdString());
	if (img.empty())
		return;

	Mat dst;
	flip(img, dst, 0);//上下翻转
	imshow("flip0", dst);
	flip(img, dst, 1);//左右翻转
	imshow("flip1", dst);
	flip(img, dst, -1);//180°旋转
	imshow("flip-1", dst);

  int h = img.rows;
	int w = img.cols;
	Mat M = getRotationMatrix2D(Point2f(w / 2, h / 2), 45, 1.0);

	double cos = abs(M.at<double>(0, 0));
	double sin = abs(M.at<double>(0, 1));
	int nw = cos * w + sin * h;
	int nh = sin * w + cos * h;

	M.at<double>(0, 2) = M.at<double>(0, 2) + (nw / 2 - w / 2);
	M.at<double>(1, 2) = M.at<double>(1, 2) + (nh / 2 - h / 2);

	warpAffine(img, dst, M, Size(nw,nh),INTER_LINEAR,0,Scalar(255,0,0));
	imshow("rotate", dst);

二十二、图像直方图

	QString appPath = QCoreApplication::applicationDirPath();
	imagePath = appPath + "/A.jpg";
	img = cv::imread(imagePath.toStdString());
	if (img.empty())
		return;
	// 三通道分离
	std::vector<Mat> bgr_plane;
	split(img, bgr_plane);
	// 定义参数变量
	const int channels[1] = { 0 };
	const int bins[1] = { 256 };
	float hranges[2] = { 0,255 };
	const float* ranges[1] = { hranges };
	Mat b_hist;
	Mat g_hist;
	Mat r_hist;
	// 计算Blue, Green, Red通道的直方图
	calcHist(&bgr_plane[0], 1, 0, Mat(), b_hist, 1, bins, ranges);
	calcHist(&bgr_plane[1], 1, 0, Mat(), g_hist, 1, bins, ranges);
	calcHist(&bgr_plane[2], 1, 0, Mat(), r_hist, 1, bins, ranges);

	// 显示直方图
	int hist_w = 512;
	int hist_h = 400;
	int bin_w = cvRound((double)hist_w / bins[0]);
	Mat histImage = Mat::zeros(hist_h, hist_w, CV_8UC3);
	// 归一化直方图数据
	normalize(b_hist, b_hist, 0, histImage.rows, NORM_MINMAX, -1, Mat());
	normalize(g_hist, g_hist, 0, histImage.rows, NORM_MINMAX, -1, Mat());
	normalize(r_hist, r_hist, 0, histImage.rows, NORM_MINMAX, -1, Mat());
	// 绘制直方图曲线
	for (int i = 1; i < bins[0]; i++) {
		line(histImage, Point(bin_w*(i - 1), hist_h - cvRound(b_hist.at<float>(i - 1))),
			Point(bin_w*(i), hist_h - cvRound(b_hist.at<float>(i))), Scalar(255, 0, 0), 2, 8, 0);
		line(histImage, Point(bin_w*(i - 1), hist_h - cvRound(g_hist.at<float>(i - 1))),
			Point(bin_w*(i), hist_h - cvRound(g_hist.at<float>(i))), Scalar(0, 255, 0), 2, 8, 0);
		line(histImage, Point(bin_w*(i - 1), hist_h - cvRound(r_hist.at<float>(i - 1))),
			Point(bin_w*(i), hist_h - cvRound(r_hist.at<float>(i))), Scalar(0, 0, 255), 2, 8, 0);
	}
	// 显示直方图
	namedWindow("Histogram Demo", WINDOW_AUTOSIZE);
	imshow("Histogram Demo", histImage);

二十三、二维直方图

	QString appPath = QCoreApplication::applicationDirPath();
	imagePath = appPath + "/A.jpg";
	img = cv::imread(imagePath.toStdString());
	if (img.empty())
		return;

	// 2D 直方图
	Mat hsv, hs_hist;
	cvtColor(img, hsv, COLOR_BGR2HSV);
	int hbins = 30, sbins = 32;
	int hist_bins[] = { hbins, sbins };
	float h_range[] = { 0, 180 };
	float s_range[] = { 0, 256 };
	const float* hs_ranges[] = { h_range, s_range };
	int hs_channels[] = { 0, 1 };
	calcHist(&hsv, 1, hs_channels, Mat(), hs_hist, 2, hist_bins, hs_ranges, true, false);
	double maxVal = 0;
	minMaxLoc(hs_hist, 0, &maxVal, 0, 0);
	int scale = 10;
	Mat hist2d_image = Mat::zeros(sbins*scale, hbins * scale, CV_8UC3);
	for (int h = 0; h < hbins; h++) {
		for (int s = 0; s < sbins; s++)
		{
			float binVal = hs_hist.at<float>(h, s);
			int intensity = cvRound(binVal * 255 / maxVal);
			rectangle(hist2d_image, Point(h*scale, s*scale),
				Point((h + 1)*scale - 1, (s + 1)*scale - 1),
				Scalar::all(intensity),
				-1);
		}
	}
	applyColorMap(hist2d_image, hist2d_image, COLORMAP_JET);
	imshow("H-S Histogram", hist2d_image);
	imwrite("D:/hist_2d.png", hist2d_image);

二十四、直方图均衡化

	QString appPath = QCoreApplication::applicationDirPath();
	imagePath = appPath + "/A.jpg";
	img = cv::imread(imagePath.toStdString());
	if (img.empty())
		return;

	Mat gray;
	cvtColor(img, gray, COLOR_BGR2GRAY);
	imshow("灰度图像", gray);
	Mat dst;
	equalizeHist(gray, dst);//只支持单通道灰度图像
	imshow("直方图均衡化演示", dst);

二十五、直方图均衡化

	QString appPath = QCoreApplication::applicationDirPath();
	imagePath = appPath + "/A.jpg";
	img = cv::imread(imagePath.toStdString());
	if (img.empty())
		return;

	Mat gray;
	cvtColor(img, gray, COLOR_BGR2GRAY);
	imshow("灰度图像", gray);
	Mat dst;
	equalizeHist(gray, dst);//只支持单通道灰度图像
	imshow("直方图均衡化演示", dst);

二十六、图像卷积

	QString appPath = QCoreApplication::applicationDirPath();
	imagePath = appPath + "/A.jpg";
	img = cv::imread(imagePath.toStdString());
	if (img.empty())
		return;

	Mat dst;
	blur(img, dst, Size(15, 15), Point(-1, -1));
	imshow("图像卷积", dst);

二十七、图像卷积

	QString appPath = QCoreApplication::applicationDirPath();
	imagePath = appPath + "/A.jpg";
	img = cv::imread(imagePath.toStdString());
	if (img.empty())
		return;

	Mat dst;
	blur(img, dst, Size(15, 15), Point(-1, -1));
	imshow("图像卷积", dst);

二十八、高斯模糊

	QString appPath = QCoreApplication::applicationDirPath();
	imagePath = appPath + "/A.jpg";
	img = cv::imread(imagePath.toStdString());
	if (img.empty())
		return;

	Mat dst;
	GaussianBlur(img, dst, Size(0, 0), 15);//ksize正数奇数
	imshow("高斯模糊", dst);

二十九、高斯双边模糊

	QString appPath = QCoreApplication::applicationDirPath();
	imagePath = appPath + "/A.jpg";
	img = cv::imread(imagePath.toStdString());
	if (img.empty())
		return;

	Mat dst;
	bilateralFilter(img, dst, 0, 100, 10);
	imshow("双边模糊", dst);

三十、人脸识别

	std::string root_dir = "D:/opencv/sources/samples/dnn/face_detector/";
	dnn::Net net = dnn::readNetFromTensorflow(root_dir + "opencv_face_detector_uint8.pb", root_dir + "opencv_face_detector.pbtxt");
	//VideoCapture capture("D:/code/opencv_tutorial_data/images/example_dsh.mp4");
	VideoCapture capture(0, CAP_DSHOW);
	Mat frame;
	while (true) {
		capture.read(frame);
		if (frame.empty()) {
			break;
		}
		Mat blob = dnn::blobFromImage(frame, 1.0, Size(300, 300), Scalar(104, 177, 123), false, false);
		net.setInput(blob);// NCHW
		Mat probs = net.forward(); 
		Mat detectionMat(probs.size[2], probs.size[3], CV_32F, probs.ptr<float>());
		// 解析结果
		for (int i = 0; i < detectionMat.rows; i++) {
			float confidence = detectionMat.at<float>(i, 2);
			if (confidence > 0.5) {
				int x1 = static_cast<int>(detectionMat.at<float>(i, 3)*frame.cols);
				int y1 = static_cast<int>(detectionMat.at<float>(i, 4)*frame.rows);
				int x2 = static_cast<int>(detectionMat.at<float>(i, 5)*frame.cols);
				int y2 = static_cast<int>(detectionMat.at<float>(i, 6)*frame.rows);
				Rect box(x1, y1, x2 - x1, y2 - y1);
				rectangle(frame, box, Scalar(0, 0, 255), 2, 8, 0);
			}
		}
		imshow("人脸检测演示", frame);
		int c = waitKey(1);
		if (c == 27) { // 退出
			break;
		}
	}

源码:https://github.com/YouyangHan/openCV_study

你可能感兴趣的:(OpenCV学习,opencv,人工智能,计算机视觉,C++)