Azkaban各种类型的Job编写

一、概述

原生的 Azkaban 支持的plugin类型有以下这些:

  1. command:Linux shell命令行任务
  2. gobblin:通用数据采集工具
  3. hadoopJava:运行hadoopMR任务
  4. java:原生java任务
  5. hive:支持执行hiveSQL
  6. pig:pig脚本任务
  7. spark:spark任务
  8. hdfsToTeradata:把数据从hdfs导入Teradata
  9. teradataToHdfs:把数据从Teradata导入hdfs

其中最简单而且最常用的是command类型,我们在上一篇文章中已经描述了如何编写一个command的job任务。所以我们把重点放到Azkaban支持的比较常用的四种类型:java、hadoopJava、hive、spark

二、java类型

1、代码编写:MyJavaJob.java

package com.dataeye.java;

public class MyJavaJob {

    public static void main(String[] args) {
        System.out.println("#################################");
        System.out.println("####  MyJavaJob class exec... ###");
        System.out.println("#################################");
    }

}

2、打包成jar文件:使用maven或者eclipse导出为jar文件

3、编写job文件:java.job

type=javaprocess

classpath=./lib/*,${azkaban.home}/lib/*

java.class=com.dataeye.java.MyJavaJob

4、组成一个完整的运行包
新建一个目录,在该目录下创建一个lib文件夹,把第二步打包的jar文件放到这里,把job文件放到和lib文件夹同一级的目录下,如下所示:

image

5、打包成zip文件

把lib目录和job文件打包成zip文件,如下的java.zip:

image

6、提交运行,过程跟之前文章介绍的步骤一样,不再详述,执行结果如下:

image

从输出日志可以看出,代码已经正常执行。

以上是java类型的任务编写和执行的过程。接下来介绍其他任务编写的时候,只会介绍代码的编写和job的编写,其他过程与上面的一致。

三、hadoopJava类型

1、数据准备

以下内容是运行wordcount任务时需要的输入文件input.txt:

1   Ross    male    33  3674
2   Julie   male    42  2019
3   Gloria  female  45  3567
4   Carol   female  36  2813
5   Malcolm male    42  2856
6   Joan    female  22  2235
7   Niki    female  27  3682
8   Betty   female  20  3001
9   Linda   male    21  2511
10  Whitney male    35  3075
11  Lily    male    27  3645
12  Fred    female  39  2202
13  Gary    male    28  3925
14  William female  38  2056
15  Charles male    48  2981
16  Michael male    25  2606
17  Karl    female  32  2260
18  Barbara male    39  2743
19  Elizabeth   female  26  2726
20  Helen   female  47  2457
21  Katharine   male    45  3638
22  Lee female  43  3050
23  Ann male    35  2874
24  Diana   male    37  3929
25  Fiona   female  45  2955
26  Bob female  21  3382
27  John    male    48  3677
28  Thomas  female  22  2784
29  Dean    male    38  2266
30  Paul    female  31  2679

把input.txt文件拷贝到hdfs的 /data/yann/input 目录下

2、代码准备:

package azkaban.jobtype.examples.java;

import azkaban.jobtype.javautils.AbstractHadoopJob;
import azkaban.utils.Props;
import java.io.IOException;
import java.util.Iterator;
import java.util.StringTokenizer;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reducer;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.mapred.TextInputFormat;
import org.apache.hadoop.mapred.TextOutputFormat;
import org.apache.log4j.Logger;

public class WordCount extends AbstractHadoopJob
{
  private static final Logger logger = Logger.getLogger(WordCount.class);
  private final String inputPath;
  private final String outputPath;
  private boolean forceOutputOverrite;

  public WordCount(String name, Props props)
  {
    super(name, props);
    this.inputPath = props.getString("input.path");
    this.outputPath = props.getString("output.path");
    this.forceOutputOverrite = props.getBoolean("force.output.overwrite", false);
  }

  public void run()
    throws Exception
  {
    logger.info(String.format("Starting %s", new Object[] { getClass().getSimpleName() }));

    JobConf jobconf = getJobConf();
    jobconf.setJarByClass(WordCount.class);

    jobconf.setOutputKeyClass(Text.class);
    jobconf.setOutputValueClass(IntWritable.class);

    jobconf.setMapperClass(Map.class);
    jobconf.setReducerClass(Reduce.class);

    jobconf.setInputFormat(TextInputFormat.class);
    jobconf.setOutputFormat(TextOutputFormat.class);

    FileInputFormat.addInputPath(jobconf, new Path(this.inputPath));
    FileOutputFormat.setOutputPath(jobconf, new Path(this.outputPath));

    if (this.forceOutputOverrite)
    {
      FileSystem fs = FileOutputFormat.getOutputPath(jobconf).getFileSystem(jobconf);
      fs.delete(FileOutputFormat.getOutputPath(jobconf), true);
    }

    super.run();
  }

  public static class Map extends MapReduceBase
    implements Mapper
  {
    private static final IntWritable one = new IntWritable(1);
    private Text word = new Text();

    private long numRecords = 0L;

    public void map(LongWritable key, Text value, OutputCollector output, Reporter reporter) throws IOException
    {
      String line = value.toString();
      StringTokenizer tokenizer = new StringTokenizer(line);
      while (tokenizer.hasMoreTokens()) {
        this.word.set(tokenizer.nextToken());
        output.collect(this.word, one);
        reporter.incrCounter(Counters.INPUT_WORDS, 1L);
      }

      if (++this.numRecords % 100L == 0L)
        reporter.setStatus("Finished processing " + this.numRecords + " records " + "from the input file");
    }

    static enum Counters
    {
      INPUT_WORDS;
    }
  }

  public static class Reduce extends MapReduceBase
    implements Reducer
  {
    public void reduce(Text key, Iterator values, OutputCollector output, Reporter reporter)
      throws IOException
    {
      int sum = 0;
      while (values.hasNext()) {
        sum += ((IntWritable)values.next()).get();
      }
      output.collect(key, new IntWritable(sum));
    }
  }
}

3、编写job文件

wordcount.job文件内容如下:

type=hadoopJava

job.extend=false

job.class=azkaban.jobtype.examples.java.WordCount

classpath=./lib/*,${azkaban.home}/lib/*

force.output.overwrite=true

input.path=/data/yann/input

output.path=/data/yann/output

这样hadoopJava类型的任务已经完成,打包提交到Azkaban中执行即可

四、hive类型

1、编写 hive.sql文件

use azkaban;

INSERT OVERWRITE TABLE 
 user_table1 PARTITION (day_p='2017-02-08') 
SELECT appid,uid,country,province,city 
 FROM user_table0 where adType=1;

以上是标准的hive的sql脚本,首先切换到azkaban数据库,然后把user_table0 的数据插入到user_table1 表的指定day_p分区。需要先准备好 user_table0 和 user_table1 表结构和数据。

编写完成后,把文件放入 res 文件夹中。

2、编写hive.job文件

type=hive

user.to.proxy=azkaban

classpath=./lib/*,${azkaban.home}/lib/*

azk.hive.action=execute.query

hive.script=res/hive.sql

关键的参数是 hive.script,该参数指定使用的sql脚本在 res目录下的hive.sql文件

五、spark类型

spark任务有两种运行方式,一种是command类型,另一种是spark类型

首先准备好spark任务的代码

package com.dataeye.template.spark

import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.{SQLContext}

object WordCount {
  def main(args: Array[String]) {
    if (args.length < 1) {
      System.err.println("Usage:WordCount ")
      System.exit(1)
    }

    System.out.println("get first param ==> " + args(0))
    System.out.println("get second param ==> " + args(1))

    /** spark 2.0的方式
      * val spark = SparkSession.builder().appName("WordCount").getOrCreate()
      */
    val sc = new SparkContext(new SparkConf().setAppName("WordCount"))
    val spark = new SQLContext(sc)
    val file = spark.sparkContext.textFile(args(0))
    val wordCounts = file.flatMap(line => line.split(" ")).map(word => (word, 1)).reduceByKey(_ + _)
    // 数据collect 到driver端打印
    wordCounts.collect().foreach(println _)
  }
}

然后准备数据,数据就使用前面hadoopJava中的数据即可。

最后打包成jar文件:spark-template-1.0-SNAPSHOT.jar

1、command类型

command类型的配置方式比较简单,spark.job文件如下:

type=command

command=${spark.home}/bin/spark-submit --master yarn-cluster --class com.dataeye.template.spark.WordCount lib/spark-template-1.0-SNAPSHOT.jar   hdfs://de-hdfs/data/yann/info.txt   paramtest

2、spark类型

type=spark

master=yarn-cluster
execution-jar=lib/spark-template-1.0-SNAPSHOT.jar
class=com.dataeye.template.spark.WordCount
params=hdfs://de-hdfs/data/yann/info.txt  paramtest

以上就是Azkaban支持的几种常用的任务类型。

你可能感兴趣的:(Azkaban各种类型的Job编写)