[数字信号处理]IIR滤波器的间接设计(C代码)

1.模拟滤波器的设计

      1.1巴特沃斯滤波器的次数

        根据给定的参数设计模拟滤波器,然后进行变数变换,求取数字滤波器的方法,称为滤波器的间接设计。做为数字滤波器的设计基础的模拟滤波器,称之为原型滤波器。这里,我们首先介绍的是最简单最基础的原型滤波器,巴特沃斯低通滤波器。由于IIR滤波器不具有线性相位特性,因此不必考虑相位特性,直接考虑其振幅特性。
[数字信号处理]IIR滤波器的间接设计(C代码)_第1张图片
       在这里,N是滤波器的次数,Ωc是截止频率。从上式的振幅特性可以看出,这个是单调递减的函数,其振幅特性是不存在纹波的。设计的时候,一般需要先计算跟所需要设计参数相符合的次数N。首先,就需要先由阻带频率,计算出阻带衰减
将巴特沃斯低通滤波器的振幅特性,直接带入上式,则有
[数字信号处理]IIR滤波器的间接设计(C代码)_第2张图片
最后,可以解得次数N为
[数字信号处理]IIR滤波器的间接设计(C代码)_第3张图片
当然,这里的N只能为正数,因此,若结果为小数,则舍弃小数,向上取整。

      1.2巴特沃斯滤波器的传递函数

         巴特沃斯低通滤波器的传递函数,可由其振幅特性的分母多项式求得。其分母多项式

根据S解开,可以得到极点。

[数字信号处理]IIR滤波器的间接设计(C代码)_第4张图片

上式所求得的极点,是在s平面内,在半径为Ωc的圆上等间距的点,其数量为2N个。为了使得其IIR滤波器稳定,那么,只能选取极点在S平面左半平面的点。选定了稳定的极点之后,其模拟滤波器的传递函数就可由下式求得。


 

       1.3巴特沃斯滤波器的实现(C语言)

          首先,是次数的计算。次数的计算,我们可以由下式求得。
[数字信号处理]IIR滤波器的间接设计(C代码)_第5张图片         

其对应的C语言程序为

 

 

   N = Ceil(0.5*( log10 ( pow (10, Stopband_attenuation/10) - 1) / 
	 	            log10 (Stopband/Cotoff) ));

 

         然后是极点的选择,这里由于涉及到复数的操作,我们就声明一个复数结构体就可以了。最重要的是,极点的计算含有自然指数函数,这点对于计算机来讲,不是太方便,所以,我们将其替换为三角函数,

[数字信号处理]IIR滤波器的间接设计(C代码)_第6张图片

这样的话,实部与虚部就还可以分开来计算。其代码实现为

 

typedef struct 
{
    double Real_part;
    double Imag_Part;
} COMPLEX;


COMPLEX poles[N];

for(k = 0;k <= ((2*N)-1) ; k++)
{
    if(Cotoff*cos((k+dk)*(pi/N)) < 0)
    {
        poles[count].Real_part = -Cotoff*cos((k+dk)*(pi/N));
	  poles[count].Imag_Part= -Cotoff*sin((k+dk)*(pi/N));	   
        count++;
	    if (count == N) break;
    }
} 


       计算出稳定的极点之后,就可以进行传递函数的计算了。传递的函数的计算,就像下式一样

 


这里,为了得到模拟滤波器的系数,需要将分母乘开。很显然,这里的极点不一定是整数,或者来说,这里的乘开需要做复数运算。其复数的乘法代码如下,

 

int Complex_Multiple(COMPLEX a,COMPLEX b,
	             double *Res_Real,double *Res_Imag)
	
{
       *(Res_Real) =  (a.Real_part)*(b.Real_part) - (a.Imag_Part)*(b.Imag_Part);
       *(Res_Imag)=  (a.Imag_Part)*(b.Real_part) + (a.Real_part)*(b.Imag_Part);	   
	 return (int)1; 
}

有了乘法代码之后,我们现在简单的情况下,看看其如何计算其滤波器系数。我们做如下假设

 

 

这个时候,其传递函数为

 

将其乘开,其大致的关系就像下图所示一样。

[数字信号处理]IIR滤波器的间接设计(C代码)_第7张图片

计算的关系一目了然,这样的话,实现就简单多了。高阶的情况下也一样,重复这种计算就可以了。其代码为

 

     Res[0].Real_part = poles[0].Real_part; 
     Res[0].Imag_Part= poles[0].Imag_Part;
     Res[1].Real_part = 1; 
     Res[1].Imag_Part= 0;

    for(count_1 = 0;count_1 < N-1;count_1++)
    {
	     for(count = 0;count <= count_1 + 2;count++)
	     {
	         if(0 == count)
		    {
 	                Complex_Multiple(Res[count], poles[count_1+1],
						           &(Res_Save[count].Real_part),
						           &(Res_Save[count].Imag_Part));
	         }
	         else if((count_1 + 2) == count)
	         {
	               Res_Save[count].Real_part  += Res[count - 1].Real_part;
			     Res_Save[count].Imag_Part += Res[count - 1].Imag_Part;
	         }		  
		     else 
		     {
 	                Complex_Multiple(Res[count], poles[count_1+1],
						           &(Res_Save[count].Real_part),
						           &(Res_Save[count].Imag_Part));				
			 1     Res_Save[count].Real_part  += Res[count - 1].Real_part;
			      Res_Save[count].Imag_Part += Res[count - 1].Imag_Part;
		    }
	     }
       *(b+N) = *(a+N);
  }

到此,我们就可以得到一个模拟滤波器巴特沃斯低通滤波器了。

 

 

2.双1次z变换

      2.1双1次z变换的原理

        我们为了将模拟滤波器转换为数字滤波器的,可以用的方法很多。这里着重说说双1次z变换。我们希望通过双1次z变换,建立一个s平面到z平面的映射关系,将模拟滤波器转换为数字滤波器。
        和之前的例子一样,我们假设有如下模拟滤波器的传递函数。

将其做拉普拉斯逆变换,可得到其时间域内的连续微分方程式,

其中,x(t)表示输入,y(t)表示输出。然后我们需要将其离散化,假设其采样周期是T,用差分方程去近似的替代微分方程,可以得到下面结果

然后使用z变换,再将其化简。可得到如下结果
[数字信号处理]IIR滤波器的间接设计(C代码)_第8张图片
从而,我们可以得到了s平面到z平面的映射关系,即

由于所有的高阶系统都可以视为一阶系统的并联,所以,这个映射关系在高阶系统中,也是成立的。

然后,将关系式

带入上式,可得
[数字信号处理]IIR滤波器的间接设计(C代码)_第9张图片
到这里,我们可以就可以得到Ω与ω的对应关系了。


         这里的Ω与ω的对应关系很重要。我们最终的目的设计的是数字滤波器,所以,设计时候给的参数必定是数字滤波器的指标。而我们通过间接设计设计IIR滤波器时候,首先是要设计模拟滤波器,再通过变换,得到数字滤波器。那么,我们首先需要做的,就是将数字滤波器的指标,转换为模拟滤波器的指标,基于这个指标去设计模拟滤波器。另外,这里的采样时间T的取值很随意,为了方便计算,一般取1s就可以。

       2.2双1次z变换的实现(C语言)

         我们设计好的巴特沃斯低通滤波器的传递函数如下所示。
     
我们将其进行双1次z变换,我们可以得到如下式子

可以看出,我们还是需要将式子乘开,进行合并同类项,这个跟之前说的算法相差不大。其代码为。

 

 

for(Count = 0;Count<=N;Count++)
	{    	
	       for(Count_Z = 0;Count_Z <= N;Count_Z++)
	      	{
	      	     Res[Count_Z] = 0;
		     Res_Save[Count_Z] = 0;	 
	      	}
                Res_Save [0] = 1;
	       for(Count_1 = 0; Count_1 < N-Count;Count_1++)
	      	{
			  for(Count_2 = 0; Count_2 <= Count_1+1;Count_2++)
	      		{
	      		    if(Count_2 == 0)  Res[Count_2] += Res_Save[Count_2];	
                  else if((Count_2 == (Count_1+1))&&(Count_1 != 0))  
			                Res[Count_2] += -Res_Save[Count_2 - 1]; 
                  else  Res[Count_2] += Res_Save[Count_2] - Res_Save[Count_2 - 1];
  			  for(Count_Z = 0;Count_Z<= N;Count_Z++)
		         {
 		              Res_Save[Count_Z]  =  Res[Count_Z] ;
			         Res[Count_Z]  = 0;
		         }			
	      	}
		for(Count_1 = (N-Count); Count_1 < N;Count_1++)
	      	{
                        for(Count_2 = 0; Count_2 <= Count_1+1;Count_2++)
	      		{
	      		     if(Count_2 == 0)  Res[Count_2] += Res_Save[Count_2];	
			     else if((Count_2 == (Count_1+1))&&(Count_1 != 0))  
			                  Res[Count_2] += Res_Save[Count_2 - 1];
			     else  
			           Res[Count_2] += Res_Save[Count_2] + Res_Save[Count_2 - 1];	
			 }
		          for(Count_Z = 0;Count_Z<= N;Count_Z++)
		          {
 		               Res_Save[Count_Z]  =  Res[Count_Z] ;
			       Res[Count_Z]  = 0;
		          }
	      	}
	        for(Count_Z = 0;Count_Z<= N;Count_Z++)
		{
                    *(az+Count_Z) +=  pow(2,N-Count) * (*(as+Count)) *
                       Res_Save[Count_Z];
	            *(bz+Count_Z) +=  (*(bs+Count)) * Res_Save[Count_Z];		     
		 }	
	}

到此,我们就已经实现了一个数字滤波器。

 


 

3.IIR滤波器的间接设计代码(C语言)

#include <stdio.h>
#include <math.h>
#include <malloc.h>
#include <string.h>


#define     pi     ((double)3.1415926)


struct DESIGN_SPECIFICATION
{
    double Cotoff;   
    double Stopband;
    double Stopband_attenuation;
};

typedef struct 
{
    double Real_part;
    double Imag_Part;
} COMPLEX;



int Ceil(double input)
{
     if(input != (int)input) return ((int)input) +1;
     else return ((int)input); 
}


int Complex_Multiple(COMPLEX a,COMPLEX b
	                                 ,double *Res_Real,double *Res_Imag)
	
{
       *(Res_Real) =  (a.Real_part)*(b.Real_part) - (a.Imag_Part)*(b.Imag_Part);
       *(Res_Imag)=  (a.Imag_Part)*(b.Real_part) + (a.Real_part)*(b.Imag_Part);	   
	 return (int)1; 
}


int Buttord(double Cotoff,
	             double Stopband,
	             double Stopband_attenuation)
{
   int N;

   printf("Wc =  %lf  [rad/sec] \n" ,Cotoff);
   printf("Ws =  %lf  [rad/sec] \n" ,Stopband);
   printf("As  =  %lf  [dB] \n" ,Stopband_attenuation);
   printf("--------------------------------------------------------\n" );
	 
   N = Ceil(0.5*( log10 ( pow (10, Stopband_attenuation/10) - 1) / 
	 	            log10 (Stopband/Cotoff) ));
   
   
   return (int)N;
}


int Butter(int N, double Cotoff,
	           double *a,
	           double *b)
{
    double dk = 0;
    int k = 0;
    int count = 0,count_1 = 0;
    COMPLEX poles[N];
    COMPLEX Res[N+1],Res_Save[N+1];

    if((N%2) == 0) dk = 0.5;
    else dk = 0;

    for(k = 0;k <= ((2*N)-1) ; k++)
    {
         if(Cotoff*cos((k+dk)*(pi/N)) < 0)
         {
               poles[count].Real_part = -Cotoff*cos((k+dk)*(pi/N));
		  poles[count].Imag_Part= -Cotoff*sin((k+dk)*(pi/N));	   
              count++;
	        if (count == N) break;
         }
    } 

     printf("Pk =   \n" );   
     for(count = 0;count < N ;count++)
     {
           printf("(%lf) + (%lf i) \n" ,-poles[count].Real_part
		                         	  ,-poles[count].Imag_Part);
     }
     printf("--------------------------------------------------------\n" );
	 
     Res[0].Real_part = poles[0].Real_part; 
     Res[0].Imag_Part= poles[0].Imag_Part;

     Res[1].Real_part = 1; 
     Res[1].Imag_Part= 0;

    for(count_1 = 0;count_1 < N-1;count_1++)
    {
	     for(count = 0;count <= count_1 + 2;count++)
	     {
	          if(0 == count)
		   {
 	                Complex_Multiple(Res[count], poles[count_1+1],
						           &(Res_Save[count].Real_part),
						           &(Res_Save[count].Imag_Part));
			   //printf( "Res_Save : (%lf) + (%lf i) \n" ,Res_Save[0].Real_part,Res_Save[0].Imag_Part);
	          }

	          else if((count_1 + 2) == count)
	          {
	                 Res_Save[count].Real_part  += Res[count - 1].Real_part;
			    Res_Save[count].Imag_Part += Res[count - 1].Imag_Part;	
	          }		  
		    else 
		    {
 	                 Complex_Multiple(Res[count], poles[count_1+1],
						           &(Res_Save[count].Real_part),
						           &(Res_Save[count].Imag_Part));

                       //printf( "Res          : (%lf) + (%lf i) \n" ,Res[count - 1].Real_part,Res[count - 1].Imag_Part);
			    //printf( "Res_Save : (%lf) + (%lf i) \n" ,Res_Save[count].Real_part,Res_Save[count].Imag_Part);
				
			    Res_Save[count].Real_part  += Res[count - 1].Real_part;
			    Res_Save[count].Imag_Part += Res[count - 1].Imag_Part;
			
			    //printf( "Res_Save : (%lf) + (%lf i) \n" ,Res_Save[count].Real_part,Res_Save[count].Imag_Part);
				
		    }
		    //printf("There \n" );
	     }

	     for(count = 0;count <= N;count++)
	     {
	           Res[count].Real_part = Res_Save[count].Real_part; 
                 Res[count].Imag_Part= Res_Save[count].Imag_Part;
				 
		    *(a + N - count) = Res[count].Real_part;
	     }
		 
	     //printf("There!! \n" );
		 
    	}

     *(b+N) = *(a+N);

     //------------------------display---------------------------------//
     printf("bs =  [" );   
     for(count = 0;count <= N ;count++)
     {
           printf("%lf ", *(b+count));
     }
     printf(" ] \n" );

     printf("as =  [" );   
     for(count = 0;count <= N ;count++)
     {
           printf("%lf ", *(a+count));
     }
     printf(" ] \n" );

     printf("--------------------------------------------------------\n" );

     return (int) 1;
}


int Bilinear(int N, 
	             double *as,double *bs,
	             double *az,double *bz)
{
      int Count = 0,Count_1 = 0,Count_2 = 0,Count_Z = 0;
      double Res[N+1];
	double Res_Save[N+1]; 

      	for(Count_Z = 0;Count_Z <= N;Count_Z++)
	{
                 *(az+Count_Z)  = 0;
		    *(bz+Count_Z)  = 0;
	}

	
	for(Count = 0;Count<=N;Count++)
	{    	
	      for(Count_Z = 0;Count_Z <= N;Count_Z++)
	      	{
	      	     Res[Count_Z] = 0;
		     Res_Save[Count_Z] = 0;	 
	      	}
             Res_Save [0] = 1;
	
	      for(Count_1 = 0; Count_1 < N-Count;Count_1++)
	      	{
			for(Count_2 = 0; Count_2 <= Count_1+1;Count_2++)
	      		{
	      		     if(Count_2 == 0)  
			     {
			           Res[Count_2] += Res_Save[Count_2];
				     //printf( "Res[%d] %lf  \n" , Count_2 ,Res[Count_2]);
			     } 	

			     else if((Count_2 == (Count_1+1))&&(Count_1 != 0))  
			     {
			           Res[Count_2] += -Res_Save[Count_2 - 1];   
                              //printf( "Res[%d] %lf  \n" , Count_2 ,Res[Count_2]);
			     } 

			     else  
			     {
			           Res[Count_2] += Res_Save[Count_2] - Res_Save[Count_2 - 1];
				    //printf( "Res[%d] %lf  \n" , Count_2 ,Res[Count_2]);
			     }				 
			}

                   	//printf( "Res : ");
		      for(Count_Z = 0;Count_Z<= N;Count_Z++)
		      {
 		             Res_Save[Count_Z]  =  Res[Count_Z] ;
			       Res[Count_Z]  = 0;
				//printf( "[%d]  %lf  " ,Count_Z, Res_Save[Count_Z]);     
		      }
		      //printf(" \n" );
			
	      	}

		for(Count_1 = (N-Count); Count_1 < N;Count_1++)
	      	{
                    for(Count_2 = 0; Count_2 <= Count_1+1;Count_2++)
	      		{
	      		     if(Count_2 == 0)  
			     {
			           Res[Count_2] += Res_Save[Count_2];
				     //printf( "Res[%d] %lf  \n" , Count_2 ,Res[Count_2]);
			     } 	

			     else if((Count_2 == (Count_1+1))&&(Count_1 != 0))  
			     {
			           Res[Count_2] += Res_Save[Count_2 - 1];
                              //printf( "Res[%d] %lf  \n" , Count_2 ,Res[Count_2]);
			      } 

			     else  
			     {
			           Res[Count_2] += Res_Save[Count_2] + Res_Save[Count_2 - 1];
				     //printf( "Res[%d] %lf  \n" , Count_2 ,Res[Count_2]);
			     }				 
			}

                   //	printf( "Res : ");
		      for(Count_Z = 0;Count_Z<= N;Count_Z++)
		      {
 		             Res_Save[Count_Z]  =  Res[Count_Z] ;
			       Res[Count_Z]  = 0;
				//printf( "[%d]  %lf  " ,Count_Z, Res_Save[Count_Z]);     
		      }
		       //printf(" \n" );
	      	}


             //printf( "Res : ");
		for(Count_Z = 0;Count_Z<= N;Count_Z++)
		{
                    *(az+Count_Z) +=  pow(2,N-Count)  *  (*(as+Count)) * Res_Save[Count_Z];
			 *(bz+Count_Z) +=  (*(bs+Count)) * Res_Save[Count_Z];		
                     //printf( "  %lf  " ,*(bz+Count_Z));         
		 }	
		 //printf(" \n" );

	}


      
     for(Count_Z = N;Count_Z >= 0;Count_Z--)
     {
          *(bz+Count_Z) =  (*(bz+Count_Z))/(*(az+0));
          *(az+Count_Z) =  (*(az+Count_Z))/(*(az+0));
     }
	 

	//------------------------display---------------------------------//
      printf("bz =  [" );   
      for(Count_Z= 0;Count_Z <= N ;Count_Z++)
      {
           printf("%lf ", *(bz+Count_Z));
      }
      printf(" ] \n" );
      printf("az =  [" );   
      for(Count_Z= 0;Count_Z <= N ;Count_Z++)
      {
           printf("%lf ", *(az+Count_Z));
      }
      printf(" ] \n" );
      printf("--------------------------------------------------------\n" );

	

	 return (int) 1;
}





int main(void)
{
     int count;

     struct DESIGN_SPECIFICATION IIR_Filter;

     IIR_Filter.Cotoff      = (double)(pi/2);         //[red]
     IIR_Filter.Stopband = (double)((pi*3)/4);   //[red]
     IIR_Filter.Stopband_attenuation = 30;        //[dB]
  
     int N;

     IIR_Filter.Cotoff = 2 * tan((IIR_Filter.Cotoff)/2);            //[red/sec]
     IIR_Filter.Stopband = 2 * tan((IIR_Filter.Stopband)/2);   //[red/sec]

     N = Buttord(IIR_Filter.Cotoff,
	 	          IIR_Filter.Stopband,
	 	          IIR_Filter.Stopband_attenuation);
     printf("N:  %d  \n" ,N);
     printf("--------------------------------------------------------\n" );

     double as[N+1] , bs[N+1];
     Butter(N, 
                IIR_Filter.Cotoff,
	         as,
	         bs); 

     double az[N+1] , bz[N+1];
     
     Bilinear(N, 
	           as,bs,
	           az,bz);

     printf("Finish \n" );
     return (int)0;
}


3.间接设计实现的IIR滤波器的性能

       3.1设计指标

              [数字信号处理]IIR滤波器的间接设计(C代码)_第10张图片

        3.2程序执行结果

           使用上述程序,gcc编译通过,执行结果如下。
[数字信号处理]IIR滤波器的间接设计(C代码)_第11张图片

       其频率响应如下所示。博客地址: http://blog.csdn.net/thnh169/

 

[数字信号处理]IIR滤波器的间接设计(C代码)_第12张图片


 

你可能感兴趣的:(代码)