根据S解开,可以得到极点。
上式所求得的极点,是在s平面内,在半径为Ωc的圆上等间距的点,其数量为2N个。为了使得其IIR滤波器稳定,那么,只能选取极点在S平面左半平面的点。选定了稳定的极点之后,其模拟滤波器的传递函数就可由下式求得。
其对应的C语言程序为
N = Ceil(0.5*( log10 ( pow (10, Stopband_attenuation/10) - 1) / log10 (Stopband/Cotoff) ));
然后是极点的选择,这里由于涉及到复数的操作,我们就声明一个复数结构体就可以了。最重要的是,极点的计算含有自然指数函数,这点对于计算机来讲,不是太方便,所以,我们将其替换为三角函数,
这样的话,实部与虚部就还可以分开来计算。其代码实现为
typedef struct { double Real_part; double Imag_Part; } COMPLEX; COMPLEX poles[N]; for(k = 0;k <= ((2*N)-1) ; k++) { if(Cotoff*cos((k+dk)*(pi/N)) < 0) { poles[count].Real_part = -Cotoff*cos((k+dk)*(pi/N)); poles[count].Imag_Part= -Cotoff*sin((k+dk)*(pi/N)); count++; if (count == N) break; } }
计算出稳定的极点之后,就可以进行传递函数的计算了。传递的函数的计算,就像下式一样
这里,为了得到模拟滤波器的系数,需要将分母乘开。很显然,这里的极点不一定是整数,或者来说,这里的乘开需要做复数运算。其复数的乘法代码如下,
int Complex_Multiple(COMPLEX a,COMPLEX b, double *Res_Real,double *Res_Imag) { *(Res_Real) = (a.Real_part)*(b.Real_part) - (a.Imag_Part)*(b.Imag_Part); *(Res_Imag)= (a.Imag_Part)*(b.Real_part) + (a.Real_part)*(b.Imag_Part); return (int)1; }
有了乘法代码之后,我们现在简单的情况下,看看其如何计算其滤波器系数。我们做如下假设
这个时候,其传递函数为
将其乘开,其大致的关系就像下图所示一样。
计算的关系一目了然,这样的话,实现就简单多了。高阶的情况下也一样,重复这种计算就可以了。其代码为
Res[0].Real_part = poles[0].Real_part; Res[0].Imag_Part= poles[0].Imag_Part; Res[1].Real_part = 1; Res[1].Imag_Part= 0; for(count_1 = 0;count_1 < N-1;count_1++) { for(count = 0;count <= count_1 + 2;count++) { if(0 == count) { Complex_Multiple(Res[count], poles[count_1+1], &(Res_Save[count].Real_part), &(Res_Save[count].Imag_Part)); } else if((count_1 + 2) == count) { Res_Save[count].Real_part += Res[count - 1].Real_part; Res_Save[count].Imag_Part += Res[count - 1].Imag_Part; } else { Complex_Multiple(Res[count], poles[count_1+1], &(Res_Save[count].Real_part), &(Res_Save[count].Imag_Part)); 1 Res_Save[count].Real_part += Res[count - 1].Real_part; Res_Save[count].Imag_Part += Res[count - 1].Imag_Part; } } *(b+N) = *(a+N); }
到此,我们就可以得到一个模拟滤波器巴特沃斯低通滤波器了。
可以看出,我们还是需要将式子乘开,进行合并同类项,这个跟之前说的算法相差不大。其代码为。
for(Count = 0;Count<=N;Count++) { for(Count_Z = 0;Count_Z <= N;Count_Z++) { Res[Count_Z] = 0; Res_Save[Count_Z] = 0; } Res_Save [0] = 1; for(Count_1 = 0; Count_1 < N-Count;Count_1++) { for(Count_2 = 0; Count_2 <= Count_1+1;Count_2++) { if(Count_2 == 0) Res[Count_2] += Res_Save[Count_2]; else if((Count_2 == (Count_1+1))&&(Count_1 != 0)) Res[Count_2] += -Res_Save[Count_2 - 1]; else Res[Count_2] += Res_Save[Count_2] - Res_Save[Count_2 - 1]; for(Count_Z = 0;Count_Z<= N;Count_Z++) { Res_Save[Count_Z] = Res[Count_Z] ; Res[Count_Z] = 0; } } for(Count_1 = (N-Count); Count_1 < N;Count_1++) { for(Count_2 = 0; Count_2 <= Count_1+1;Count_2++) { if(Count_2 == 0) Res[Count_2] += Res_Save[Count_2]; else if((Count_2 == (Count_1+1))&&(Count_1 != 0)) Res[Count_2] += Res_Save[Count_2 - 1]; else Res[Count_2] += Res_Save[Count_2] + Res_Save[Count_2 - 1]; } for(Count_Z = 0;Count_Z<= N;Count_Z++) { Res_Save[Count_Z] = Res[Count_Z] ; Res[Count_Z] = 0; } } for(Count_Z = 0;Count_Z<= N;Count_Z++) { *(az+Count_Z) += pow(2,N-Count) * (*(as+Count)) * Res_Save[Count_Z]; *(bz+Count_Z) += (*(bs+Count)) * Res_Save[Count_Z]; } }
到此,我们就已经实现了一个数字滤波器。
#include <stdio.h> #include <math.h> #include <malloc.h> #include <string.h> #define pi ((double)3.1415926) struct DESIGN_SPECIFICATION { double Cotoff; double Stopband; double Stopband_attenuation; }; typedef struct { double Real_part; double Imag_Part; } COMPLEX; int Ceil(double input) { if(input != (int)input) return ((int)input) +1; else return ((int)input); } int Complex_Multiple(COMPLEX a,COMPLEX b ,double *Res_Real,double *Res_Imag) { *(Res_Real) = (a.Real_part)*(b.Real_part) - (a.Imag_Part)*(b.Imag_Part); *(Res_Imag)= (a.Imag_Part)*(b.Real_part) + (a.Real_part)*(b.Imag_Part); return (int)1; } int Buttord(double Cotoff, double Stopband, double Stopband_attenuation) { int N; printf("Wc = %lf [rad/sec] \n" ,Cotoff); printf("Ws = %lf [rad/sec] \n" ,Stopband); printf("As = %lf [dB] \n" ,Stopband_attenuation); printf("--------------------------------------------------------\n" ); N = Ceil(0.5*( log10 ( pow (10, Stopband_attenuation/10) - 1) / log10 (Stopband/Cotoff) )); return (int)N; } int Butter(int N, double Cotoff, double *a, double *b) { double dk = 0; int k = 0; int count = 0,count_1 = 0; COMPLEX poles[N]; COMPLEX Res[N+1],Res_Save[N+1]; if((N%2) == 0) dk = 0.5; else dk = 0; for(k = 0;k <= ((2*N)-1) ; k++) { if(Cotoff*cos((k+dk)*(pi/N)) < 0) { poles[count].Real_part = -Cotoff*cos((k+dk)*(pi/N)); poles[count].Imag_Part= -Cotoff*sin((k+dk)*(pi/N)); count++; if (count == N) break; } } printf("Pk = \n" ); for(count = 0;count < N ;count++) { printf("(%lf) + (%lf i) \n" ,-poles[count].Real_part ,-poles[count].Imag_Part); } printf("--------------------------------------------------------\n" ); Res[0].Real_part = poles[0].Real_part; Res[0].Imag_Part= poles[0].Imag_Part; Res[1].Real_part = 1; Res[1].Imag_Part= 0; for(count_1 = 0;count_1 < N-1;count_1++) { for(count = 0;count <= count_1 + 2;count++) { if(0 == count) { Complex_Multiple(Res[count], poles[count_1+1], &(Res_Save[count].Real_part), &(Res_Save[count].Imag_Part)); //printf( "Res_Save : (%lf) + (%lf i) \n" ,Res_Save[0].Real_part,Res_Save[0].Imag_Part); } else if((count_1 + 2) == count) { Res_Save[count].Real_part += Res[count - 1].Real_part; Res_Save[count].Imag_Part += Res[count - 1].Imag_Part; } else { Complex_Multiple(Res[count], poles[count_1+1], &(Res_Save[count].Real_part), &(Res_Save[count].Imag_Part)); //printf( "Res : (%lf) + (%lf i) \n" ,Res[count - 1].Real_part,Res[count - 1].Imag_Part); //printf( "Res_Save : (%lf) + (%lf i) \n" ,Res_Save[count].Real_part,Res_Save[count].Imag_Part); Res_Save[count].Real_part += Res[count - 1].Real_part; Res_Save[count].Imag_Part += Res[count - 1].Imag_Part; //printf( "Res_Save : (%lf) + (%lf i) \n" ,Res_Save[count].Real_part,Res_Save[count].Imag_Part); } //printf("There \n" ); } for(count = 0;count <= N;count++) { Res[count].Real_part = Res_Save[count].Real_part; Res[count].Imag_Part= Res_Save[count].Imag_Part; *(a + N - count) = Res[count].Real_part; } //printf("There!! \n" ); } *(b+N) = *(a+N); //------------------------display---------------------------------// printf("bs = [" ); for(count = 0;count <= N ;count++) { printf("%lf ", *(b+count)); } printf(" ] \n" ); printf("as = [" ); for(count = 0;count <= N ;count++) { printf("%lf ", *(a+count)); } printf(" ] \n" ); printf("--------------------------------------------------------\n" ); return (int) 1; } int Bilinear(int N, double *as,double *bs, double *az,double *bz) { int Count = 0,Count_1 = 0,Count_2 = 0,Count_Z = 0; double Res[N+1]; double Res_Save[N+1]; for(Count_Z = 0;Count_Z <= N;Count_Z++) { *(az+Count_Z) = 0; *(bz+Count_Z) = 0; } for(Count = 0;Count<=N;Count++) { for(Count_Z = 0;Count_Z <= N;Count_Z++) { Res[Count_Z] = 0; Res_Save[Count_Z] = 0; } Res_Save [0] = 1; for(Count_1 = 0; Count_1 < N-Count;Count_1++) { for(Count_2 = 0; Count_2 <= Count_1+1;Count_2++) { if(Count_2 == 0) { Res[Count_2] += Res_Save[Count_2]; //printf( "Res[%d] %lf \n" , Count_2 ,Res[Count_2]); } else if((Count_2 == (Count_1+1))&&(Count_1 != 0)) { Res[Count_2] += -Res_Save[Count_2 - 1]; //printf( "Res[%d] %lf \n" , Count_2 ,Res[Count_2]); } else { Res[Count_2] += Res_Save[Count_2] - Res_Save[Count_2 - 1]; //printf( "Res[%d] %lf \n" , Count_2 ,Res[Count_2]); } } //printf( "Res : "); for(Count_Z = 0;Count_Z<= N;Count_Z++) { Res_Save[Count_Z] = Res[Count_Z] ; Res[Count_Z] = 0; //printf( "[%d] %lf " ,Count_Z, Res_Save[Count_Z]); } //printf(" \n" ); } for(Count_1 = (N-Count); Count_1 < N;Count_1++) { for(Count_2 = 0; Count_2 <= Count_1+1;Count_2++) { if(Count_2 == 0) { Res[Count_2] += Res_Save[Count_2]; //printf( "Res[%d] %lf \n" , Count_2 ,Res[Count_2]); } else if((Count_2 == (Count_1+1))&&(Count_1 != 0)) { Res[Count_2] += Res_Save[Count_2 - 1]; //printf( "Res[%d] %lf \n" , Count_2 ,Res[Count_2]); } else { Res[Count_2] += Res_Save[Count_2] + Res_Save[Count_2 - 1]; //printf( "Res[%d] %lf \n" , Count_2 ,Res[Count_2]); } } // printf( "Res : "); for(Count_Z = 0;Count_Z<= N;Count_Z++) { Res_Save[Count_Z] = Res[Count_Z] ; Res[Count_Z] = 0; //printf( "[%d] %lf " ,Count_Z, Res_Save[Count_Z]); } //printf(" \n" ); } //printf( "Res : "); for(Count_Z = 0;Count_Z<= N;Count_Z++) { *(az+Count_Z) += pow(2,N-Count) * (*(as+Count)) * Res_Save[Count_Z]; *(bz+Count_Z) += (*(bs+Count)) * Res_Save[Count_Z]; //printf( " %lf " ,*(bz+Count_Z)); } //printf(" \n" ); } for(Count_Z = N;Count_Z >= 0;Count_Z--) { *(bz+Count_Z) = (*(bz+Count_Z))/(*(az+0)); *(az+Count_Z) = (*(az+Count_Z))/(*(az+0)); } //------------------------display---------------------------------// printf("bz = [" ); for(Count_Z= 0;Count_Z <= N ;Count_Z++) { printf("%lf ", *(bz+Count_Z)); } printf(" ] \n" ); printf("az = [" ); for(Count_Z= 0;Count_Z <= N ;Count_Z++) { printf("%lf ", *(az+Count_Z)); } printf(" ] \n" ); printf("--------------------------------------------------------\n" ); return (int) 1; } int main(void) { int count; struct DESIGN_SPECIFICATION IIR_Filter; IIR_Filter.Cotoff = (double)(pi/2); //[red] IIR_Filter.Stopband = (double)((pi*3)/4); //[red] IIR_Filter.Stopband_attenuation = 30; //[dB] int N; IIR_Filter.Cotoff = 2 * tan((IIR_Filter.Cotoff)/2); //[red/sec] IIR_Filter.Stopband = 2 * tan((IIR_Filter.Stopband)/2); //[red/sec] N = Buttord(IIR_Filter.Cotoff, IIR_Filter.Stopband, IIR_Filter.Stopband_attenuation); printf("N: %d \n" ,N); printf("--------------------------------------------------------\n" ); double as[N+1] , bs[N+1]; Butter(N, IIR_Filter.Cotoff, as, bs); double az[N+1] , bz[N+1]; Bilinear(N, as,bs, az,bz); printf("Finish \n" ); return (int)0; }
其频率响应如下所示。博客地址: http://blog.csdn.net/thnh169/