等比数列、矩阵二分求和

 

  对于式子的值,我们若直接算出等比数列的和再模上M,那么中间结果可能会溢出。对于这个问题,我们可以用二分求和来做,这样一来,它的中间结果每次都在模M,任何时候都不会有溢出的危险。对上述式子进行如下化简:

等比数列、矩阵二分求和_第1张图片

 

根据,以上化简的结果,我们可以得出递归的代码:

 1 #include <cstdio>
 2 #include <cstring>
 3 using namespace std;
 4 const int MOD = 10000;
 5 int Pow(int a, int n)
 6 {
 7     int r=1;
 8     while(n)
 9     {
10         if(n&1)
11             r = (r*a)%MOD;
12         a = (a*a)%MOD;
13         n >>= 1;
14     }
15     return r;
16 }
17 // 计算Sn = (a^1+a^2+...+a^n)%MOD
18 int Sum(int a, int n)
19 {
20     if(n==1) return a;
21     int t = Sum(a, n/2);
22     if(n&1)
23     {
24         int c = Pow(a, n/2+1);
25         t = (t%MOD+(t%MOD*c%MOD)%MOD+c%MOD)%MOD;
26     }
27     else
28     {
29         int c = Pow(a, n/2);
30         t = (t + t*c) % MOD;
31     }
32     return t;
33 }
34 int  main()
35 {
36     int a, n;
37     while(~scanf("%d%d",&a, &n))
38     {
39         printf("%d\n",Sum(a, n));
40     }
41     return 0;
42 }
View Code

 

 

相应的可以得出矩阵二分求和的代码:

  1 #include <cstdio>
  2 #include <cstring>
  3 #include <algorithm>
  4 using namespace std;
  5 #define INF 0x3f3f3f3f
  6 #define N 35
  7 int MOD;
  8 
  9 struct Matrix
 10 {
 11     int map[N][N];
 12     int n;
 13     Matrix()
 14     {
 15         n=0;
 16         memset(map, 0, sizeof map);
 17     }
 18     Matrix(int k)
 19     {
 20         n = 0;
 21         memset(map, 0, sizeof map);
 22         for(int i=0; i<N; i++) map[i][i] = k;
 23     }
 24     Matrix operator * (const Matrix &a) const
 25     {
 26         Matrix e;
 27         e.n = n;
 28         for(int i=0; i<n; i++)
 29             for(int j=0; j<n; j++)
 30                 for(int k=0; k<n; k++)
 31                     e.map[i][j] = (e.map[i][j]+a.map[i][k]*map[k][j])%MOD;
 32         return e;
 33     }
 34     Matrix operator + (const Matrix &a) const
 35     {
 36         Matrix e;
 37         e.n = n;
 38         for(int i=0; i<n; i++)
 39             for(int j=0; j<n; j++)
 40                 e.map[i][j] = (a.map[i][j] + map[i][j])%MOD;
 41         return e;
 42     }
 43     void print() const
 44     {
 45         for(int i=0; i<n; i++)
 46         {
 47             for(int j=0; j<n-1; j++)
 48                 printf("%d ",map[i][j]);
 49             printf("%d\n",map[i][n-1]);
 50         }
 51     }
 52 };
 53 
 54 Matrix Pow(Matrix a, int b)
 55 {
 56     Matrix e(1);
 57     e.n = a.n;
 58     while(b)
 59     {
 60         if(b&1)
 61             e = a * e;
 62         a = a * a;
 63         b >>= 1;
 64     }
 65     return e;
 66 }
 67 
 68 // 计算 Sn = (a+a^2+a^3+...+a^n)%MOD; 其中a为矩阵.
 69 Matrix Sum(Matrix a, int n)
 70 {
 71     if(n==1)return a;
 72     Matrix t = Sum(a, n/2);
 73     if(n&1)
 74     {
 75         Matrix c = Pow(a, n/2+1);
 76         t = t + (t * c);
 77         t = t + c;
 78     }
 79     else
 80     {
 81         Matrix c = Pow(a, n/2);
 82         t = t + (t * c);
 83     }
 84     return t;
 85 }
 86 
 87 int main()
 88 {
 89     int n, m, k;
 90     while(~scanf("%d%d%d",&n, &k, &m) && n+m)
 91     {
 92         MOD = m;
 93         Matrix A, B;
 94         A.n = n;
 95         for(int i=0; i<n; i++)
 96             for(int j=0; j<n; j++)
 97                 scanf("%d",&A.map[i][j]);
 98         B = Sum(A, k);
 99         B.print();
100     }
101     return 0;
102 }
View Code

 

你可能感兴趣的:(二分)