HDU 3516 Tree Construction(四边形不等式)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3516

题意:给定一些点(xi,yi)(xj,yj)满足:i<j,xi<xj,yi>yj。用下面的连起来,使得所有边的长度最小?

HDU 3516 Tree Construction(四边形不等式)

思路:设f[i][j]表示[i,j]区间的点连起来的最小代价,则f[i][j]=min(f[i][k]+f[k+1][j]+cost(i,j)),显然对于一个k,cost(i,j)=a[k].y-a[j].y+a[k+1].x-a[i].x。看上去跟四边形不等式有些关系,首先需要证明下面的两个:(a<b<c<d)

(1)cost(a,c)+cost(b,d)<=cost(b,c)+cost(a,d)

(2)cost(b,c)<=cost(a,d)

不好证明,有这个结论:w为凸当且仅当:cost(i,j)+cost(i+1,j+1)<=cost(i+1,j)+cost(i,j+1)。这个式子的证明是:首先固定j,计算cost(i,j+1)-cost(i,j)=a[i].y-a[i+1].y<0递减;同理固定i也是递减的,因此cost(i,j)是凸的。

#include <iostream>

#include <stdio.h>

#include <string.h>

#include <algorithm>

#include <cmath>

#include <vector>

#include <queue>

#include <set>

#include <stack>

#include <string>

#include <map>





#define max(x,y) ((x)>(y)?(x):(y))

#define min(x,y) ((x)<(y)?(x):(y))

#define abs(x) ((x)>=0?(x):-(x))

#define i64 long long

#define u32 unsigned int

#define u64 unsigned long long

#define clr(x,y) memset(x,y,sizeof(x))

#define CLR(x) x.clear()

#define ph(x) push(x)

#define pb(x) push_back(x)

#define Len(x) x.length()

#define SZ(x) x.size()

#define PI acos(-1.0)

#define sqr(x) ((x)*(x))

#define MP(x,y) make_pair(x,y)

#define EPS 1e-9



#define FOR0(i,x) for(i=0;i<x;i++)

#define FOR1(i,x) for(i=1;i<=x;i++)

#define FOR(i,a,b) for(i=a;i<=b;i++)

#define FORL0(i,a) for(i=a;i>=0;i--)

#define FORL1(i,a) for(i=a;i>=1;i--)

#define FORL(i,a,b)for(i=a;i>=b;i--)





#define rush(n) for(scanf("%d",&C);C--;)

#define Rush(n)  while(scanf("%d",&n)!=-1)

using namespace std;





void RD(int &x){scanf("%d",&x);}

void RD(u32 &x){scanf("%u",&x);}

void RD(double &x){scanf("%lf",&x);}

void RD(int &x,int &y){scanf("%d%d",&x,&y);}

void RD(u32 &x,u32 &y){scanf("%u%u",&x,&y);}

void RD(double &x,double &y){scanf("%lf%lf",&x,&y);}

void RD(int &x,int &y,int &z){scanf("%d%d%d",&x,&y,&z);}

void RD(int &x,int &y,int &z,int &t){scanf("%d%d%d%d",&x,&y,&z,&t);}

void RD(u32 &x,u32 &y,u32 &z){scanf("%u%u%u",&x,&y,&z);}

void RD(double &x,double &y,double &z){scanf("%lf%lf%lf",&x,&y,&z);}

void RD(char &x){x=getchar();}

void RD(char *s){scanf("%s",s);}

void RD(string &s){cin>>s;}





void PR(int x) {printf("%d\n",x);}

void PR(int x,int y) {printf("%d %d\n",x,y);}

void PR(int x,int y,int z) {printf("%d %d %d\n",x,y,z);}

void PR(i64 x) {printf("%lld\n",x);}

void PR(u32 x) {printf("%u\n",x);}

void PR(double x) {printf("%.5lf\n",x);}

void PR(char x) {printf("%c\n",x);}

void PR(char *x) {printf("%s\n",x);}

void PR(string x) {cout<<x<<endl;}





const int INF=1000000000;

const int N=1005;



struct point

{

    int x,y;



    void get()

    {

        RD(x,y);

    }

};





point a[N];

int n,s[N][N],f[N][N];



int cost(int i,int k,int j)

{

    return abs(a[k].y-a[j].y)+abs(a[k+1].x-a[i].x);

}





int main()

{

    Rush(n)

    {

        int i,j,k,L,temp;

        FOR1(i,n) a[i].get(),s[i][i]=i;

        clr(f,0);

        for(L=2;L<=n;L++) for(i=1;i+L-1<=n;i++)

        {

            j=i+L-1; f[i][j]=INF;

            FOR(k,s[i][j-1],s[i+1][j])

            {

                temp=f[i][k]+f[k+1][j]+cost(i,k,j);

                if(temp<f[i][j]) f[i][j]=temp,s[i][j]=k;

            }

        }

        PR(f[1][n]);

    }

    return 0;

}

  

你可能感兴趣的:(struct)