非关系型数据库(NoSQL = Not Only SQL)的产品非常多,常见的有Memcached、Redis、MongoDB等优秀开源项目,相关概念和资料网上也非常丰富,不再重复描述,本文主要引入Memcached和Redis与淘宝开源Tair分布式存储进行对比测试,由于各自适用场景不同,且每个产品的可配置参数繁多,涉及缓存策略、分布算法、序列化方式、数据压缩技术、通信方式、并发、超时等诸多方面因素,都会对测试结果产生影响,单纯的性能对比存在非常多的局限性和不合理性,所以不能作为任何评估依据,仅供参考,加深对各自产品的理解。以下是一些基本认识:
1、尽管 Memcached 和 Redis 都标识为Distribute,但从Server端本身而言它们并不提供分布式的解决方案,需要Client端实现一定的分布算法将数据存储到各个节点,从而实现分布式存储,两者都提供了Replication功能(Master-Slave)保障可靠性。
2、Tair 则本身包含 Config Server 和 Data Server 采用一致性哈希算法分布数据存储,由ConfigSever来管理所有数据节点,理论上服务器端节点的维护对前端应用不会产生任何影响,同时数据能按指定复制到不同的DataServer保障可靠性,从Cluster角度来看属于一个整体Solution,组件图参照上一篇博文(http://www.cnblogs.com/lengfo/p/4171655.html)。
基于此,本文设定了实验环境都使用同一台机器进行 Memcached、Redis 和 Tair 的单Server部署测试。
1、虚拟机环境(OS:CentOS6.5,CPU:2 Core,Memory:4G)
2、软件环境
Sever | Client | |
Memcached | Memcached 1.4.21 | Xmemcached 2.0.0 |
Redis | Redis 2.8.19 | Jedis 2.8.5 |
Tair | Tair 2.3 | Tair Client 2.3.1 |
3、服务器配置,单一服务器通过配置尽可能让资源分配一致(由于各个产品服务器端的配置相对复杂,不再单独列出,以下仅描述内存、连接等基本配置)
IP_Port | Memory_Size | Max_Connection | 备注 | |
Memcached | 10.129.221.70:12000 | 1024MB | 2048 | |
Redis | 10.129.221.70:6379 | 1gb(1000000000byte) | 10000(默认) | |
Tair Config Server | 10.129.221.70:5198 | |||
Tair Data Server | 10.129.221.70:5191 | 1024MB | 使用mdb存储引擎 |
1、从数据库读取一组数据缓存(SET)到每个缓存服务器,其中对于每个Server的写入数据是完全一致的,不设置过期时间,进行如下测试。
1)单线程进行1次写入
2)单线程进行500次写入
3)单线程进行2000次写入
4)并行500个线程,每个线程进行1次写入
5)并行500个线程,每个线程进行5次写入
6)并行2000个线程,每个线程进行1次写入
2、分别从每个缓存服务器读取(GET)数据,其中对于每个Server的读取数据大小是完全一致的,进行如下测试。
1)单线程进行1次读取
2)单线程进行500次读取
3)单线程进行2000次读取
4)并行500个线程,每个线程进行1次读取
5)并行500个线程,每个线程进行5次读取
6)并行2000个线程,每个线程进行1次读取
1、缓存Model对象(OrderInfo)的定义参照tbOrder表(包括单据号、制单日期、商品、数量等字段)
2、单线程的读写操作对于代码的要求相对较低,不需要考虑Pool,主要代码如下:
1)Memcached单线程读写,使用二进制方式序列化,不启用压缩。
1 public static void putItems2Memcache(List<OrderInfo> orders) throws Exception { 2 MemcachedClient memcachedClient = null; 3 try { 4 MemcachedClientBuilder builder = new XMemcachedClientBuilder(AddrUtil.getAddresses("10.129.221.70:12000")); 5 builder.setCommandFactory(new BinaryCommandFactory()); 6 memcachedClient = builder.build(); 7 8 for (OrderInfo order : orders) { 9 boolean isSuccess = memcachedClient.set("order_" + order.BillNumber, 0, order); 10 if (!isSuccess) { 11 System.out.println("put: order_" + order.BillNumber + " " + isSuccess); 12 } 13 } 14 } catch (Exception ex) { 15 ex.printStackTrace(); 16 } finally { 17 memcachedClient.shutdown(); 18 } 19 } 20 21 public static void getItemsFromMemcache(List<String> billNumbers) throws Exception { 22 MemcachedClient memcachedClient = null; 23 try { 24 MemcachedClientBuilder builder = new XMemcachedClientBuilder(AddrUtil.getAddresses("10.129.221.70:12000")); 25 builder.setCommandFactory(new BinaryCommandFactory()); 26 memcachedClient = builder.build(); 27 28 for (String billnumber : billNumbers) { 29 OrderInfo result = memcachedClient.get(billnumber); 30 31 if (result == null) { 32 System.out.println(" get failed : " + billnumber + " not exist "); 33 } 34 } 35 } catch (Exception ex) { 36 ex.printStackTrace(); 37 } finally { 38 memcachedClient.shutdown(); 39 } 40 }
2)Redis单线程读写,由于Jedis Client 不支持对象的序列化,需要自行实现对象序列化(本文使用二进制方式)。
1 public static void putItems2Redis(List<OrderInfo> orders) { 2 Jedis jedis = new Jedis("10.129.221.70", 6379); 3 4 try { 5 jedis.connect(); 6 7 for (OrderInfo order : orders) { 8 String StatusCode = jedis.set(("order_" + order.BillNumber).getBytes(), SerializeUtil.serialize(order)); 9 if (!StatusCode.equals("OK")) { 10 System.out.println("put: order_" + order.BillNumber + " " + StatusCode); 11 } 12 } 13 } catch (Exception ex) { 14 ex.printStackTrace(); 15 } finally { 16 jedis.close(); 17 } 18 } 19 20 public static void getItemsFromRedis(List<String> billNumbers) { 21 Jedis jedis = new Jedis("10.129.221.70", 6379); 22 23 try { 24 jedis.connect(); 25 26 for (String billnumber : billNumbers) { 27 byte[] result = jedis.get(billnumber.getBytes()); 28 if (result.length > 0) { 29 OrderInfo order = (OrderInfo) SerializeUtil.unserialize(result); 30 if (order == null) { 31 System.out.println(" unserialize failed : " + billnumber); 32 } 33 } else { 34 System.out.println(" get failed : " + billnumber + " not exist "); 35 } 36 } 37 } catch (Exception ex) { 38 ex.printStackTrace(); 39 } finally { 40 jedis.close(); 41 } 42 }
序列化代码
1 package common; 2 3 import java.io.ByteArrayInputStream; 4 import java.io.ByteArrayOutputStream; 5 import java.io.ObjectInputStream; 6 import java.io.ObjectOutputStream; 7 8 public class SerializeUtil { 9 10 /** 11 * 序列化 12 * @param object 13 * @return 14 */ 15 public static byte[] serialize(Object object) { 16 ObjectOutputStream oos = null; 17 ByteArrayOutputStream baos = null; 18 19 try { 20 baos = new ByteArrayOutputStream(); 21 oos = new ObjectOutputStream(baos); 22 oos.writeObject(object); 23 byte[] bytes = baos.toByteArray(); 24 return bytes; 25 } catch (Exception e) { 26 e.printStackTrace(); 27 } 28 return null; 29 } 30 31 /** 32 * 反序列化 33 * @param bytes 34 * @return 35 */ 36 public static Object unserialize(byte[] bytes) { 37 ByteArrayInputStream bais = null; 38 try { 39 bais = new ByteArrayInputStream(bytes); 40 ObjectInputStream ois = new ObjectInputStream(bais); 41 return ois.readObject(); 42 } catch (Exception e) { 43 e.printStackTrace(); 44 } 45 46 return null; 47 } 48 }
3)Tair单线程读写,使用Java序列化,默认压缩阀值为8192字节,但本文测试的每个写入项都不会超过这个阀值,所以不受影响。
1 public static void putItems2Tair(List<OrderInfo> orders) { 2 try { 3 List<String> confServers = new ArrayList<String>(); 4 confServers.add("10.129.221.70:5198"); 5 //confServers.add("10.129.221.70:5200"); 6 7 DefaultTairManager tairManager = new DefaultTairManager(); 8 tairManager.setConfigServerList(confServers); 9 tairManager.setGroupName("group_1"); 10 tairManager.init(); 11 12 for (OrderInfo order : orders) { 13 ResultCode result = tairManager.put(0, "order_" + order.BillNumber, order); 14 if (!result.isSuccess()) { 15 System.out.println("put: order_" + order.BillNumber + " " + result.isSuccess() + " code:" + result.getCode()); 16 } 17 } 18 } catch (Exception ex) { 19 ex.printStackTrace(); 20 } 21 } 22 23 public static void getItemsFromTair(List<String> billNumbers) { 24 try { 25 List<String> confServers = new ArrayList<String>(); 26 confServers.add("10.129.221.70:5198"); 27 //confServers.add("10.129.221.70:5200"); 28 29 DefaultTairManager tairManager = new DefaultTairManager(); 30 tairManager.setConfigServerList(confServers); 31 tairManager.setGroupName("group_1"); 32 tairManager.init(); 33 34 for (String billnumber : billNumbers) { 35 Result<DataEntry> result = tairManager.get(0, billnumber); 36 if (result.isSuccess()) { 37 DataEntry entry = result.getValue(); 38 if (entry == null) { 39 System.out.println(" get failed : " + billnumber + " not exist "); 40 } 41 } else { 42 System.out.println(result.getRc().getMessage()); 43 } 44 } 45 } catch (Exception ex) { 46 ex.printStackTrace(); 47 } 48 }
3、测试结果,每项重复测试取平均值
1、除了多线程相关代码外的公共代码和单线程基本一致,多线程测试主要增加了Client部分代码对ConnectionPool、TimeOut相关设置,池策略、大小都会对性能产生很大影响,为了达到更高的性能,不同的使用场景下都需要有科学合理的测算。
2、主要测试代码
1)每个读写测试线程任务完成后统一调用公共Callback,在每批测试任务完成后记录消耗时间
1 package common; 2 3 public class ThreadCallback { 4 5 public static int CompleteCounter = 0; 6 public static int failedCounter = 0; 7 8 public static synchronized void OnException() { 9 failedCounter++; 10 } 11 12 public static synchronized void OnComplete(String msg, int totalThreadCount, long startMili) { 13 CompleteCounter++; 14 if (CompleteCounter == totalThreadCount) { 15 long endMili = System.currentTimeMillis(); 16 System.out.println("(总共" + totalThreadCount + "个线程 ) " + msg + " ,总耗时为:" + (endMili - startMili) + "毫秒 ,发生异常线程数:" + failedCounter); 17 CompleteCounter = 0; 18 failedCounter = 0; 19 } 20 } 21 }
2)Memcached多线程读写,使用XMemcached客户端连接池,主要设置连接池大小ConnectionPoolSize=5,连接超时时间ConnectTimeout=2000ms,测试结果要求没有超时异常线程。
测试方法
1 /*-------------------Memcached(多线程初始化)--------------------*/ 2 MemcachedClientBuilder builder = new XMemcachedClientBuilder(AddrUtil.getAddresses("192.168.31.191:12000")); 3 builder.setCommandFactory(new BinaryCommandFactory()); 4 builder.setConnectionPoolSize(5); 5 builder.setConnectTimeout(2000); 6 MemcachedClient memcachedClient = builder.build(); 7 memcachedClient.setOpTimeout(2000); 8 9 /*-------------------Memcached(多线程写入)--------------------*/ 10 orders = OrderBusiness.loadOrders(5); 11 startMili = System.currentTimeMillis(); 12 totalThreadCount = 500; 13 for (int i = 1; i <= totalThreadCount; i++) { 14 MemcachePutter putter = new MemcachePutter(); 15 putter.OrderList = orders; 16 putter.Namesapce = i; 17 putter.startMili = startMili; 18 putter.TotalThreadCount = totalThreadCount; 19 putter.memcachedClient = memcachedClient; 20 21 Thread th = new Thread(putter); 22 th.start(); 23 } 24 25 //读取代码基本一致
线程任务类
1 public class MemcachePutter implements Runnable { 2 public List<OrderInfo> OrderList; 3 public int Namesapce; 4 public int TotalThreadCount; 5 public long startMili; 6 public MemcachedClient memcachedClient = null; // 线程安全的? 7 8 @Override 9 public void run() { 10 try { 11 for (OrderInfo order : OrderList) { 12 boolean isSuccess = memcachedClient.set("order_" + order.BillNumber, 0, order); 13 if (!isSuccess) { 14 System.out.println("put: order_" + order.BillNumber + " " + isSuccess); 15 } 16 } 17 } catch (Exception ex) { 18 ex.printStackTrace(); 19 ThreadCallback.OnException(); 20 } finally { 21 ThreadCallback.OnComplete("Memcached 每个线程进行" + OrderList.size() + "次 [写入] ", TotalThreadCount, startMili); 22 } 23 } 24 } 25 26 27 28 public class MemcacheGetter implements Runnable { 29 30 public List<String> billnumbers; 31 public long startMili; 32 public int TotalThreadCount; 33 public MemcachedClient memcachedClient = null; // 线程安全的? 34 35 @Override 36 public void run() { 37 try { 38 for (String billnumber : billnumbers) { 39 OrderInfo result = memcachedClient.get(billnumber); 40 if (result == null) { 41 System.out.println(" get failed : " + billnumber + " not exist "); 42 } 43 } 44 } catch (Exception ex) { 45 ex.printStackTrace(); 46 ThreadCallback.OnException(); 47 } finally { 48 ThreadCallback.OnComplete("Memcached 每个线程进行" + billnumbers.size() + "次 [读取] ", TotalThreadCount, startMili); 49 } 50 } 51 }
3)Redis多线程读写,使用Jedis客户端连接池,从源码可以看出依赖与Apache.Common.Pool2,主要设置连接池MaxTotal=5,连接超时时间Timeout=2000ms,测试结果要求没有超时异常线程。
测试方法
1 /*-------------------Redis(多线程初始化)--------------------*/ 2 GenericObjectPoolConfig config = new GenericObjectPoolConfig(); 3 config.setMaxTotal(5); 4 JedisPool jpool = new JedisPool(config, "192.168.31.191", 6379, 2000); 5 6 /*-------------------Redis(多线程写入)--------------------*/ 7 totalThreadCount = 2000; 8 orders = OrderBusiness.loadOrders(1); 9 startMili = System.currentTimeMillis(); 10 for (int i = 1; i <= totalThreadCount; i++) { 11 RedisPutter putter = new RedisPutter(); 12 putter.OrderList = orders; 13 putter.Namesapce = i; 14 putter.startMili = startMili; 15 putter.TotalThreadCount = totalThreadCount; 16 putter.jpool = jpool; 17 18 Thread th = new Thread(putter); 19 th.start(); 20 }
线程任务类
1 public class RedisPutter implements Runnable { 2 3 public List<OrderInfo> OrderList; 4 public int Namesapce; 5 public int TotalThreadCount; 6 public long startMili; 7 public JedisPool jpool; 8 9 @Override 10 public void run() { 11 Jedis jedis = jpool.getResource(); 12 13 try { 14 jedis.connect(); 15 16 for (OrderInfo order : OrderList) { 17 String StatusCode = jedis.set(("order_" + order.BillNumber).getBytes(), SerializeUtil.serialize(order)); 18 if (!StatusCode.equals("OK")) { 19 System.out.println("put: order_" + order.BillNumber + " " + StatusCode); 20 } 21 } 22 } catch (Exception ex) { 23 // ex.printStackTrace(); 24 jpool.returnBrokenResource(jedis); 25 ThreadCallback.OnException(); 26 } finally { 27 jpool.returnResource(jedis); 28 ThreadCallback.OnComplete("Redis 每个线程进行" + OrderList.size() + "次 [写入] ", TotalThreadCount, startMili); 29 } 30 } 31 } 32 33 34 35 public class RedisGetter implements Runnable { 36 public List<String> billnumbers; 37 public long startMili; 38 public int TotalThreadCount; 39 public JedisPool jpool; 40 41 @Override 42 public void run() { 43 Jedis jedis = jpool.getResource(); 44 45 try { 46 jedis.connect(); 47 for (String billnumber : billnumbers) { 48 byte[] result = jedis.get(billnumber.getBytes()); 49 if (result.length > 0) { 50 OrderInfo order = (OrderInfo) SerializeUtil.unserialize(result); 51 if (order == null) { 52 System.out.println(" unserialize failed : " + billnumber); 53 } 54 } else { 55 System.out.println(" get failed : " + billnumber + " not exist "); 56 } 57 } 58 } catch (Exception ex) { 59 // ex.printStackTrace(); 60 jpool.returnBrokenResource(jedis); 61 ThreadCallback.OnException(); 62 } finally { 63 jpool.returnResource(jedis); 64 ThreadCallback.OnComplete("Redis 每个线程进行" + billnumbers.size() + "次 [读取] ", TotalThreadCount, startMili); 65 } 66 } 67 }
4)Tair多线程读写,使用官方Tair-Client,可设置参数MaxWaitThread主要指最大等待线程数,当超过这个数量的线程在等待时,新的请求将直接返回超时,本文测试设置MaxWaitThread=100,连接超时时间Timeout=2000ms,测试结果要求没有超时异常线程。
测试方法
1 /*-------------------Tair(多线程初始化tairManager)--------------------*/ 2 List<String> confServers = new ArrayList<String>(); 3 confServers.add("192.168.31.191:5198"); 4 DefaultTairManager tairManager = new DefaultTairManager(); 5 tairManager.setConfigServerList(confServers); 6 tairManager.setGroupName("group_1"); 7 tairManager.setMaxWaitThread(100);// 最大等待线程数,当超过这个数量的线程在等待时,新的请求将直接返回超时 8 tairManager.setTimeout(2000);// 请求的超时时间,单位为毫秒 9 tairManager.init(); 10 11 /*-------------------Tair(多线程写入)--------------------*/ 12 orders = OrderBusiness.loadOrders(5); 13 startMili = System.currentTimeMillis(); 14 totalThreadCount = 500; 15 for (int i = 1; i <= totalThreadCount; i++) { 16 TairPutter putter = new TairPutter(); 17 putter.OrderList = orders; 18 putter.Namesapce = i; 19 putter.startMili = startMili; 20 putter.TotalThreadCount = totalThreadCount; 21 putter.tairManager = tairManager; 22 23 Thread th = new Thread(putter); 24 th.start(); 25 } 26 /*-------------------Tair(多线程读取)--------------------*/ 27 //读取代码基本一致
线程任务类
1 public class TairGetter implements Runnable { 2 public List<String> billnumbers; 3 public long startMili; 4 public int TotalThreadCount; 5 public DefaultTairManager tairManager; 6 7 @Override 8 public void run() { 9 try { 10 for (String billnumber : billnumbers) { 11 Result<DataEntry> result = tairManager.get(0, billnumber); 12 if (result.isSuccess()) { 13 DataEntry entry = result.getValue(); 14 if (entry == null) { 15 System.out.println(" get failed : " + billnumber + " not exist "); 16 } 17 } else { 18 System.out.println(result.getRc().getMessage()); 19 } 20 } 21 } catch (Exception ex) { 22 // ex.printStackTrace(); 23 ThreadCallback.OnException(); 24 } finally { 25 ThreadCallback.OnComplete("Tair 每个线程进行" + billnumbers.size() + "次 [读取] ", TotalThreadCount, startMili); 26 } 27 } 28 } 29 30 31 32 public class TairPutter implements Runnable { 33 34 public List<OrderInfo> OrderList; 35 public int Namesapce; 36 public int TotalThreadCount; 37 public long startMili; 38 public DefaultTairManager tairManager; 39 40 @Override 41 public void run() { 42 try { 43 for (OrderInfo order : OrderList) { 44 ResultCode result = tairManager.put(0, "order_" + order.BillNumber, order); 45 if (!result.isSuccess()) { 46 System.out.println("put: order_" + order.BillNumber + " " + result.isSuccess() + " code:" + result.getCode()); 47 } 48 } 49 } catch (Exception ex) { 50 // ex.printStackTrace(); 51 ThreadCallback.OnException(); 52 } finally { 53 ThreadCallback.OnComplete("Tair 每个线程进行" + OrderList.size() + "次 [写入] ", TotalThreadCount, startMili); 54 } 55 } 56 }
3、测试结果,每项重复测试取平均值
Redis在单线程环境下的性能表现非常突出,但在并行环境下则没有很大的优势,是JedisPool或者CommonPool的性能瓶颈还是我测试代码的问题请麻烦告之,过程中修改setMaxTotal,setMaxIdle都没有太大的改观。
Tair由于需要在服务器端实现数据分布等相关算法,所以在测试对比中性能有所损耗应该也很好理解。
如之前所言,每个技术本身的原理、策略、适用场景各不相同,尽管以上测试方法已经考虑了很多影响因素,但仍然可能存在不足之处,所以类似的对比缺乏合理性,Tair还有2种存储引擎没有测试,而且以上都基于单机环境测试,在Cluster环境下可能也会有差别,所以结果仅供参考,不作任何评估依据。