HDU 4998 Rotate --几何

题意:给n个点(x,y,p),从1~n,一次每次所有点绕着第 i 个点(原来的)逆时针转pi个弧度,问最后所有点的位置相当于绕哪个点旋转多少弧度,求出那点X和弧度P

解法:直接模拟旋转,每次计算新的坐标,最后选两个新的点分别和他们原来的点连一条线,两条线的中垂线的交点即为圆心,求出了圆心就可以求出转了多少弧度了。

注意判中垂线垂直x轴的情况以及n==1的情况。

最后角度要根据位置关系判下正负。

代码:

#include <iostream>

#include <cstdio>

#include <cstring>

#include <cstdlib>

#include <cmath>

#include <algorithm>

#define pii acos(-1.0)

#define eps 1e-8

using namespace std;

#define N 17



typedef struct point

{

   double x,y,radi;

   int ind;

   point(double x=0,double y=0):x(x),y(y){}

}Vector;



struct Point

{

    double x,y;

    Point(double x = 0,double y = 0):x(x),y(y){ }

};



Vector pi[N];

Point np[N];

int n;



int dcmp(double x)

{

    if(fabs(x)<eps)

        return 0;

    return x < 0 ? -1:1;

}

Vector operator  + (Vector A,Vector B){return Vector(A.x+B.x,A.y+B.y);}

Vector operator  -  (point A,point B){return Vector(A.x-B.x,A.y-B.y);}

Vector operator  *  (Vector A,double p){return Vector(A.x*p,A.y*p);}

Vector operator  /  (Vector A,double p){return Vector(A.x/p,A.y/p);}

bool operator ==  (const point& a,const point& b){return dcmp(a.x-b.x)==0&&dcmp(a.y-b.y)==0;}

bool operator < (const point& a,const point& b){return a.x<b.x ||(a.x==b.x&&a.y<b.y);} //比较和排序可用

double Cross(Vector A,Vector B){return A.x*B.y-A.y*B.x;}   //叉积 ,大于零说明B在A的左边,小于零说明B在A的右边

double Dot(Vector A,Vector B){return A.x*B.x+A.y*B.y;}    //点积

double Length(Vector A){return sqrt(Dot(A,A));}              //向量长度

double Angle(Vector A,Vector B){return acos(Dot(A,B)/Length(A)/Length(B));};

Vector Rotate(Vector A,double rad){return Vector(A.x*cos(rad)-A.y*sin(rad),A.x*sin(rad)+A.y*cos(rad));}//rad为弧度,向量逆时针旋转rad



int main()

{

    int t,i,j;

    scanf("%d",&t);

    while(t--)

    {

        scanf("%d",&n);

        for(i=1;i<=n;i++)

        {

            scanf("%lf%lf%lf",&pi[i].x,&pi[i].y,&pi[i].radi),pi[i].ind = i;

            np[i].x = pi[i].x;

            np[i].y = pi[i].y;

        }

        if(n == 1)

        {

            printf("%.10f %.10f %.10f\n",pi[1].x,pi[1].y,pi[1].radi);

            continue;

        }

        for(i=1;i<=n;i++)

        {

            for(j=1;j<=n;j++)

            {

                Vector k = Vector(np[j].x-pi[i].x,np[j].y-pi[i].y);

                k = Rotate(k,pi[i].radi);

                np[j].x = pi[i].x + k.x;

                np[j].y = pi[i].y + k.y;

            }

        }

        Point A,B,C,D;

        A = Point(pi[1].x,pi[1].y);

        B = np[1];

        C = Point(pi[2].x,pi[2].y);

        D = np[2];

        Point Mid1 = Point((A.x+B.x)/2.0,(A.y+B.y)/2.0);

        Point Mid2 = Point((C.x+D.x)/2.0,(C.y+D.y)/2.0);

        double k1,k2;

        double Ix,Iy;

        if(dcmp(A.y-B.y) == 0)

        {

            if(dcmp(D.x-C.x) == 0)

                k2 = 0.0;

            else

            {

                k2 = (D.y-C.y)/(D.x-C.x);

                k2 = -1.0/k2;

            }

            Ix = Mid1.x;

            Iy = Mid2.y + k2*(Mid1.x-Mid2.x);

        }

        else if(dcmp(D.y-C.y) == 0)

        {

            if(dcmp(B.x-A.x) == 0)

                k1 = 0.0;

            else

            {

                k1 = (B.y-A.y)/(B.x-A.x);

                k1 = -1.0/k1;

            }

            Ix = Mid2.x;

            Iy = Mid1.y + k1*(Mid2.x-Mid1.x);

        }

        else

        {

            k1 = (B.y-A.y)/(B.x-A.x);

            k1 = -1.0/k1;

            k2 = (D.y-C.y)/(D.x-C.x);

            k2 = -1.0/k2;

            double b1 = -k1*Mid1.x + Mid1.y;

            double b2 = -k2*Mid2.x + Mid2.y;

            Ix = (b2-b1)/(k1-k2);

            Iy = k1*Ix + b1;

        }

        Vector ka = Vector(pi[1].x-Ix,pi[1].y-Iy);

        Vector kb = Vector(np[1].x-Ix,np[1].y-Iy);

        double ang = Angle(ka,kb);

        double coss = Cross(ka,kb);

        if(dcmp(coss-0.0) == -1)

            ang = 2.0*pii-ang;

        printf("%.10f %.10f %.10f\n",Ix,Iy,ang);

    }

    return 0;

}
View Code

 

你可能感兴趣的:(HDU)