HDU 4819 Mosaic --二维线段树(树套树)

题意: 给一个矩阵,每次查询一个子矩阵内的最大最小值,然后更新子矩阵中心点为(Max+Min)/2.

解法: 由于是矩阵,且要求区间最大最小和更新单点,很容易想到二维的线段树,可是因为之前没写过二维的线段树,所以没跳出来。后来熟悉了一下,原来很多细节地方都没有考虑到。

这里build,update,query都分为两个函数,第一个为Y轴的(sub_update),第二个为X轴的(update),不仅每个sub_update或sub_build后面要加Y轴的pushup函数,而且每个update或build函数最后也要进行pushup,只不过是X轴的pushup,写成 sub_build(rt,-1,1,n,1) 或 sub_update(rt,-1,1,n,1);

二维线段树就是这里比较费解一点,我感觉, 其他地方还比较好理解。

代码:

#include <iostream>

#include <cstdio>

#include <cstring>

#include <cstdlib>

#include <cmath>

#include <algorithm>

#define Mod 1000000007

#define lll __int64

using namespace std;

#define N 100007



struct sub_seg{

    lll maxi,mini;

};



struct seg{

    sub_seg st[810<<2];

}tt[810<<2];

int n;

lll Max,Min;



void pushup(int xrt,int rt)

{

    tt[xrt].st[rt].maxi = max(tt[xrt].st[rt<<1].maxi,tt[xrt].st[rt<<1|1].maxi);

    tt[xrt].st[rt].mini = min(tt[xrt].st[rt<<1].mini,tt[xrt].st[rt<<1|1].mini);

}



void sub_build(int xrt,int posY,int l,int r,int rt)

{

    if(l == r)

    {

        if(posY != -1)

        {

            scanf("%I64d",&tt[xrt].st[rt].maxi);

            tt[xrt].st[rt].mini = tt[xrt].st[rt].maxi;

        }

        else

        {

            tt[xrt].st[rt].maxi = max(tt[xrt<<1].st[rt].maxi,tt[xrt<<1|1].st[rt].maxi);

            tt[xrt].st[rt].mini = min(tt[xrt<<1].st[rt].mini,tt[xrt<<1|1].st[rt].mini);

        }

         return;

    }

    int mid = (l + r) >> 1;

    sub_build(xrt,posY, l,mid, 2*rt);

    sub_build(xrt,posY, mid+1,r, 2*rt+1);

    pushup(xrt,rt);         //pushup Y

}



void build(int l, int r, int rt)

{

    if(l == r)

    {

        sub_build(rt,l,1,n,1);

        return;

    }

    int mid = (l + r) >> 1;

    build(l,mid,2*rt);

    build(mid+1,r,2*rt+1);

    sub_build(rt,-1,1,n,1);  //pushup X

}



void sub_update(int xrt,int pos,int y,int l,int r,int val,int rt)

{

    if(l == r)

    {

        if(pos!=-1)

            tt[xrt].st[rt].maxi = tt[xrt].st[rt].mini = val;

        else

        {

            tt[xrt].st[rt].maxi = max(tt[xrt<<1].st[rt].maxi,tt[xrt<<1|1].st[rt].maxi);

            tt[xrt].st[rt].mini = min(tt[xrt<<1].st[rt].mini,tt[xrt<<1|1].st[rt].mini);

        }

        return;

    }

    int mid = (l+r) >> 1 ;

    if(y <= mid)  sub_update(xrt, pos, y, l,mid, val, rt<<1) ;

    else          sub_update(xrt, pos, y, mid+1,r, val, rt<<1|1) ;

    pushup(xrt,rt);                     //pushup Y维

}



void update(int x,int y,int l,int r,int val,int rt)  //单点更新

{

    if(l == r)

    {

        sub_update(rt,l,y,1,n,val,1);

        return;

    }

    int mid = (l+r) >> 1;

    if(x<=mid)  update(x,y, l,mid, val, rt<<1);

    else        update(x,y, mid+1,r, val, rt<<1|1);

    sub_update(rt,-1,y,1,n,val,1);      //pushup X维

}



void sub_query(int xrt,int aa,int bb,int l,int r,int rt)

{

    if(aa <= l && bb >= r)

    {

        Max = max(Max,tt[xrt].st[rt].maxi);

        Min = min(Min,tt[xrt].st[rt].mini);

        return;

    }

    int mid = (l+r)>>1;

    if(aa<=mid)  sub_query(xrt,aa,bb,l,mid, rt<<1);

    if(bb>mid)   sub_query(xrt,aa,bb,mid+1,r, rt<<1|1);

}



void query(int l,int r,int aa,int bb,int L1,int R1,int rt)

{

    if(aa <= l && bb >= r)

    {

        sub_query(rt,L1,R1,1,n,1);

        return;

    }

    int mid = (l+r)>>1;

    if(aa <= mid)  query(l,mid,aa,bb,L1,R1, rt<<1);

    if(bb > mid)   query(mid+1,r,aa,bb,L1,R1, rt<<1|1);

}



int main()

{

    int t,i,j,m,x,y,L,cs = 1;

    scanf("%d",&t);

    while(t--)

    {

        scanf("%d",&n);

        build(1,n,1);

        scanf("%d",&m);

        printf("Case #%d:\n",cs++);

        while(m--)

        {

            scanf("%d%d%d",&x,&y,&L);

            int Lx = max(1,x-L/2);

            int Ly = max(1,y-L/2);

            int Rx = min(n,x+L/2);

            int Ry = min(y+L/2,n);

            Max = -1, Min = Mod;

            query(1,n,Lx,Rx,Ly,Ry,1);

            lll mid = (Max+Min)/2LL;

            printf("%I64d\n",mid);

            update(x,y,1,n,mid,1);

        }

    }

    return 0;

}
View Code

 

你可能感兴趣的:(HDU)