- AI工作流平台对比分析
come11234
Ai人工智能
以下是和「扣子工作流」(KoFlow)类似的AI工作流平台对比分析,涵盖主流工具的核心特点、使用方式、优缺点及区别:一、主流工作流平台分类平台类型核心定位代表用户扣子(KoFlow)低代码AI流程中文场景优化,深度集成大模型中文开发者/企业LangChain代码框架开发者灵活构建AI链Python开发者/AI工程师LlamaIndex数据增强框架企业级RAG(检索增强生成)数据工程师/知识库应用M
- 扣子工作流能实现哪些功能和单纯的提示词问大模型的区别
好的,我们来详细解释一下扣子工作流(KoFlow)的功能、优势以及与单纯使用提示词调用大模型的区别。核心概念:单纯提示词调用大模型:用户直接编写一段文本(提示词)发送给大模型,大模型根据这个提示词一次性生成回复。整个过程是“单次交互”。扣子工作流:用户构建一个可视化或代码化的流程。这个流程可以包含多个步骤,每个步骤可以执行不同的任务(调用大模型、调用API、执行代码、判断条件、循环等),步骤之间可
- 【开源分享】Conan:C/C++开发者的包管理神器
智驾
开源分享c++Conan包管理
文章目录一、现实中的依赖地狱二、Conan是什么?三、Conan的核心优势四、实际项目应用示例1.安装Conan2.创建项目结构3.编写conanfile.txt4.安装依赖5.CMake构建五、六大核心优势详解优势1:依赖隔离优势2:构建可重复性优势3:构建加速优势4:多编译器支持优势5:企业级私有仓库优势6:灵活的构建模式六、适用场景对比七、常见误区提醒八、企业级应用案例九、学习资源导航一、现
- 亚马逊广告进阶指南:什么时候应降低曝光
跨境小渊
人工智能
“如何判断广告曝光是否过度?“高ACOS但低转化时该怎么调整?”“新品推广应该优先保曝光还是控成本?”“自动广告跑出的词如何高效利用?”“预算有限时怎样避免广告浪费?”如果你也在纠结这些问题,今天的分享或许能给你一个新视角。曝光失控的底层逻辑亚马逊广告的核心矛盾永远是流量质量与成本的平衡。许多卖家陷入两难:盲目追求曝光可能导致ACOS飙升过度控制预算又会错失潜在订单传统人工优化的三大痛点:数据滞后
- AttnRNN:参数更少,却断档碾压LSTM/GRU的新RNN
wq舞s
人工智能python深度学习deeplearningai科技pytorch
研究者与发布者为:CSDNwq舞s,知乎wqwsgithubwqws突破性进展!新型注意力RNN(AttnRNN)在长序列任务中全面超越传统RNN模型在深度学习领域,循环神经网络(RNN)及其变体GRU和LSTM长期以来一直是处理序列数据的首选架构。然而,它们在长序列任务中始终存在信息遗忘和梯度消失等问题。今天,我很高兴地宣布一种全新的RNN架构——AttnRNN,它在多个长序列基准测试中全面超越
- PgSQL内核特性 | Brin索引
yzs87
搜索引擎数据库
PgSQL内核特性|Brin索引数据库在进行过滤扫描或者join时,如果该表特别大,那么就需要顺序扫描表的所有数据然后进行过滤,或者扫描所有数据进行join条件探测。这对IO的负载影响特别大,当在join时,比如HashJoin的外表,需要对每个数据都进行Hash表探测,进一步影响性能。现有列存比如Infobright、Parquet、hydra等都对存储进行了类似的改进,在每个block中增加了
- 打造世赛级信息安全实训室:一站式建设方案大揭秘
在当今数字化时代,信息安全已成为全球关注的焦点。随着信息技术的飞速发展,各类网络安全威胁日益复杂多样,对专业信息安全人才的需求也愈发迫切。世界职业院校技能大赛作为全球最高层级的职业技能赛事,其信息安全项目更是汇聚了各国顶尖的技能人才,展示着这一领域最前沿的技术与应用。打造一个达到世赛级别的信息安全实训室,无疑是培养高素质信息安全人才、提升国家网络安全防御能力的关键举措。以下将为您揭秘一站式建设世赛
- kotlin入门之泛型
易帜¤
kotlinandroid
【码上开学】Kotlin的泛型在学习kotlin泛型之前我们先来回顾一下关于Java的泛型基础吧。说道泛型,我们可能最常用的就是在三大集合中去使用。泛型将具体的类型泛化,编码的时候用符号来值代类型,在使用时再确定他的类型。因为泛型的存在,我们可以省去强制类型转化。泛型是跟类型相关的,那么是不是也能使用与类型的多态呢?场景一://多态,因为Button是TextView的子类,向上转型TextVie
- python三角网格代码_Python 实现 Delaunay Triangulation
weixin_39828457
python三角网格代码
DelaunayTriangulation是一种空间划分的方法,它能使得分割形成的三角形最小的角尽可能的大,关于DelaunayTriangulation的详细介绍,请参考这里,DelaunayTriangulation在很多领域都有应用,科学计算领域它是有限元和有限体积法划分网格的重要方法,除此之外在图像识别、视觉艺术等领域也有它的身影。贴一段有趣的油管视频,用DelaunayTriangula
- 博睿数据出席GOPS全球运维大会,深度解析如何让大模型真正“懂”运维!
运维
2025年6月27日-28日,第二十六届GOPS全球运维大会暨研运数智化技术峰会在北京盛大启幕。全球近千位行业专家齐聚一堂,围绕大模型、DevOps、SRE、可观测性等核心议题展开深度探讨。本届峰会专设可观测性、金融行业、SRE稳定性等特色专场,聚焦IT技术领域的最新发展,共探企业级最佳实践。作为国内应用性能管理及可观测性领域的领导者,博睿数据受邀出席本次大会。产品总监贺安辉亮相“可观测性专场”,
- 绩效系统的技术重构:用工程思维解决公平性与效率难题
c++前端
绩效系统的技术重构:用工程思维解决公平性与效率难题当你的绩效模块成为团队吐槽的“祖传屎山”,背后往往是技术债的集中爆发。本文从开发者视角拆解:如何用系统设计解决评分公平性、数据孤岛与流程低效三大顽疾。一、技术人眼中的绩效痛点graphTDA[绩效系统技术债]-->B[评分公平性]A-->C[数据整合]A-->D[流程效率]B-->B1(“案例:销售精英因黑盒评分离职”)C-->C1(“手动合并40
- DeepMind 发布 AlphaGenome,1 秒内完成所有模态和细胞类型的变异效应预测
hyperai
谷歌DeepMind的Alpha系列再添新成员——AlphaGenome,其能够更全面、准确地预测人类DNA序列中单个变异或突变,如何影响一系列调控基因的生物过程。AlphaGenome模型以长达100万个碱基对的DNA序列为输入,预测数千种与其调控活性相关的分子属性,同时还可以通过比较变异与未变异序列的预测结果,评估基因变异或突变的影响。该模型建立在DeepMind此前的基因组模型Enforme
- AI人工智能领域:Bard的崛起之路
AIGC应用创新大全
人工智能bardai
AI人工智能领域:Bard的崛起之路关键词:Bard、GoogleAI、大语言模型、对话式AI、自然语言处理、生成式AI、AI竞争摘要:本文深入探讨GoogleBard的发展历程、技术架构及其在AI领域的地位。我们将从Bard的诞生背景开始,分析其核心技术原理,比较与其他大语言模型的异同,并通过实际案例展示其应用场景。最后展望Bard的未来发展方向及面临的挑战。背景介绍目的和范围本文旨在全面解析G
- 前端领域 Vite 与 Webpack 的深度对比
前端视界
前端webpacknode.jsai
前端领域Vite与Webpack的深度对比关键词:Vite、Webpack、前端构建工具、模块打包、开发体验、性能优化、ESModules摘要:本文深入对比前端领域两大构建工具Vite和Webpack的核心原理、架构设计和使用场景。通过分析它们的底层机制、开发体验、构建流程和性能表现,帮助开发者理解如何在不同项目需求下做出合理选择。文章包含详细的技术原理图解、实际项目对比示例和未来发展趋势分析。背
- Kafka消息轨迹追踪:分布式系统调试利器
大数据洞察
kafkalinq分布式ai
Kafka消息轨迹追踪:分布式系统调试利器关键词Kafka、消息轨迹追踪、分布式系统、调试、消息处理、事件溯源摘要本文聚焦于Kafka消息轨迹追踪这一分布式系统调试的关键技术。首先介绍Kafka消息轨迹追踪的概念基础,包括其在分布式系统中的背景、发展历史以及问题空间。接着阐述其理论框架,从第一性原理进行推导,并分析理论局限性和竞争范式。在架构设计方面,对系统进行分解,构建组件交互模型并可视化展示。
- 【redis】介绍和安装
火龙谷
redisredis数据库缓存
介绍Redis是一款高性能的开源内存数据库,核心采用键值对(Key-Value)存储模型。其最大优势在于数据完全基于内存操作,读写速度远超传统磁盘数据库(内存访问速度可达磁盘的数千倍,固态硬盘仍有显著差距)。支持丰富的数据结构(字符串、哈希、列表、集合等),并非简单存储单一值。提供持久化机制(RDB快照/AOF日志),确保重启后数据可恢复。具备主从复制、哨兵高可用、集群分片等分布式能力,扩展性强。
- AI人工智能领域深度学习的跨模态检索技术
AI学长带你学AI
AI人工智能与大数据应用开发AI应用开发高级指南人工智能深度学习ai
AI人工智能领域深度学习的跨模态检索技术关键词:跨模态检索、深度学习、多模态学习、特征提取、相似度计算、注意力机制、Transformer摘要:本文深入探讨了AI领域中基于深度学习的跨模态检索技术。我们将从基础概念出发,详细分析跨模态检索的核心算法原理、数学模型和实际应用。文章包含完整的Python实现示例,展示如何构建一个跨模态检索系统,并讨论当前的技术挑战和未来发展方向。通过本文,读者将全面理
- matlab 渐进三角网(PTD)地面滤波(基础版)
点云侠
matlab点云工具箱matlab开发语言算法c++计算机视觉
目录一、算法原理1、PTD算法2、实现流程二、代码实现三、结果展示1、原始点云2、滤波结果代码是按照算法原理的复现,效率极低,只适合学习和理解算法。一、算法原理1、PTD算法 渐进三角网地面滤波算法(ProgressiveTINDensification,PTD)是一种广泛应用于机载LiDAR点云数据处理的滤波方法,旨在从复杂场景中精确分离地面点,以生成数字高程模型(DEM)。2、实现流程 P
- muduo
2301_80355452
php前端开发语言
好的,我们来深入剖析陈硕老师开发的著名C++网络库——muduo。它以“简单、高效、易用”著称,是学习LinuxC++高性能网络编程的绝佳范本。我会尽量详细、通俗地讲解其核心思想、关键组件、源码结构和工作原理。核心思想:Reactor模式(Non-blocking+I/OMultiplexing)muduo的灵魂是Reactor模式。理解它就理解了muduo的一半。想象一下:传统阻塞模型的问题:想
- 编程语言发展史之:逻辑编程语言
AI天才研究院
AI大模型企业级应用开发实战大数据人工智能语言模型JavaPython架构设计
作者:禅与计算机程序设计艺术1.简介逻辑编程(logicalprogramming)是一种编程范式,旨在以一种逻辑的方式来表示程序,而不是像命令式编程一样直接面向计算模型或执行指令。逻辑编程倾向于通过构造计算机所理解的数学逻辑模型来解决问题。它特别适用于那些对数据结构和算法模型十分敏感的问题。与函数式编程相比,逻辑编程更加强调数据、关系和抽象等抽象概念之间的对应关系,因此更容易设计出正确而优雅的程
- 机器视觉:ransac算法详解
无水先生
数字图形和图像处理算法计算机视觉
目录一、说明:二、算法步骤三、算法代码四、其它补充一、说明:RANSAC是一种常用的参数估计方法,全称为RandomSampleConsensus(随机抽样一致性)。它通过随机选择数据中的一部分,然后根据这些数据拟合模型,统计模型与其他数据的偏差,最终筛选出符合一定阈值的数据,用于估计参数。RANSAC可以应用于很多领域,如计算机视觉、机器人和地理信息系统等。其优点在于对噪声数据和异常值有很强的鲁
- matlab有限元相场算法
bubiyoushang888
算法matlab机器学习
研究的目的是证明一种有限元相场算法,其中相场方程是完全耦合并同时求解的。不过,在这种情况下,完全耦合的方程是弹性和非守恒的阶参数;然而,该方法可作为其他相场模型完全耦合公式的模板。这是求解具有弹性不均匀性的Allen-Cohn方程的主要程序。有限元算法。该算法解决了非保守阶参数的演化问题。全耦合模式下应力列场的演化。取决于代码中Isolve参数的选择:对于Isolve-1,代码以长手格式和非优化模
- 【T2I】R&B: REGION AND BOUNDARY AWARE ZERO-SHOT GROUNDED TEXT-TO-IMAGE GENERATION
Akttt
T2I计算机视觉人工智能text2img深度学习
CODE:2309https://github.com/StevenShaw1999/RnBABSTRACT近期的文本到图像(T2I)扩散模型在以文本提示作为输入生成高质量图像方面取得了显著进展。然而,这些模型无法传达布局指令所指定的合适空间构图。在这项工作中,我们探索了使用扩散模型进行零样本接地T2I生成,即无需训练辅助模块或微调扩散模型就能生成与输入布局信息相对应的图像。我们提出了一种区域与边
- 【多空三分天下】主图操盘系统 指标技术使用分解及源代码
选择不变
炒股主图指标区块链短线指标通达信指标公式炒股指标
如上图,多空三分天下操盘系统主图指标,主要分为如上8大信号及技术功能。当日买比详细的比例数据实时的五档买卖数据总和以及买卖差三条操盘线及对应的当下价格波段操盘买卖信号-波段操作参考强势启动信号-实体红色K线标记+钱袋图标信号关注做多信号-实体紫色+文字“关注做多”提示信号操盘线高位转空三线合一,空头形成操盘线空头三线合一,转多头一线变三线如上图,震荡或短线空头行情,一条指标线,行情转多,一线变三线
- 半监督学习+迁移学习:低成本构建高精度AI模型
AI智能探索者
AIAgent智能体开发实战人工智能学习迁移学习ai
半监督学习+迁移学习:低成本构建高精度AI模型关键词:半监督学习、迁移学习、低成本、高精度AI模型、数据利用摘要:本文主要探讨了如何通过半监督学习和迁移学习相结合的方式来低成本构建高精度的AI模型。首先介绍了半监督学习和迁移学习的背景知识,然后详细解释了这两个核心概念及其相互关系,接着阐述了相关算法原理、数学模型,还给出了项目实战案例,分析了实际应用场景,推荐了相关工具和资源,最后探讨了未来发展趋
- AI人工智能与OpenCV:实现智能图像编辑功能
AI智能探索者
AIAgent智能体开发实战人工智能opencv计算机视觉ai
AI人工智能与OpenCV:实现智能图像编辑功能关键词:人工智能、OpenCV、图像处理、计算机视觉、深度学习、智能编辑、图像增强摘要:本文深入探讨如何结合人工智能(AI)和OpenCV实现智能图像编辑功能。我们将从基础概念出发,详细介绍核心算法原理,展示实际代码实现,并分析典型应用场景。文章将涵盖从传统图像处理技术到深度学习方法的演进,重点讲解如何利用OpenCV和AI模型实现自动化的图像增强、
- 构建下一代云原生大模型多租户平台:架构设计与关键挑战
慌ZHANG
人工智能云原生后端云原生人工智能
个人主页:慌ZHANG-CSDN博客期待您的关注一、引言:从单用户部署到多租户平台的转型趋势随着开源大语言模型(LLM)能力日益强大,企业部署与应用大模型已从“验证可行性”的早期阶段,逐步迈向“规模化服务”的中后期阶段。在这一背景下,“多租户”成为企业级AI平台建设的核心议题之一:SaaS平台希望一个模型服务多个客户;大企业希望多个部门共享模型资源但相互隔离;教育、医疗等敏感行业需要更精细的数据与
- 人工智能-基础篇-2-什么是机器学习?(ML,监督学习,半监督学习,零监督学习,强化学习,深度学习,机器学习步骤等)
weisian151
人工智能人工智能机器学习学习
1、什么是机器学习?机器学习(MachineLearning,ML)是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析等数学理论。其核心目标是让计算机通过分析数据,自动学习规律并构建模型,从而对未知数据进行预测或决策,而无需依赖显式的程序指令。基本思想:通过数据驱动的方式,使系统能够从经验(数据)中改进性能,形成对数据模式的抽象化表达。基本概念:模型:模型是对现实世界现
- 2025年AI十大趋势:从多模态大模型到自主智能体
zhuzhi
人工智能大数据
2025年AI十大趋势:从多模态大模型到自主智能体人工智能技术正以前所未有的速度重塑着我们的世界。2025年,AI领域将迎来一系列突破性进展,从多模态大模型的全面进化到自主智能体的广泛应用,这些技术变革正在重新定义人机交互的边界。本文将系统梳理2025年AI发展的十大核心趋势,为读者揭示人工智能技术的最新发展方向及其对社会各领域的深远影响。趋势一:多模态大模型成为基础设施2025年,多模态大模型已
- Java基础集合框架结构分类图形
骑牛小道士
javajvm开发语言
集合集合分类分类图Collection分类Collection集合子结构之List合集Collection集合子结构之Set合集Collection集合子结构之Queue合集Map分类集合就是一个放数据的容器,准确的说是放数据对象引用的容器集合分类分类图java中集合分类有两大根接口Collection和Map集合CollectionMapCollection分类Collection集合的架构粗略
- mysql主从数据同步
林鹤霄
mysql主从数据同步
配置mysql5.5主从服务器(转)
教程开始:一、安装MySQL
说明:在两台MySQL服务器192.168.21.169和192.168.21.168上分别进行如下操作,安装MySQL 5.5.22
二、配置MySQL主服务器(192.168.21.169)mysql -uroot -p &nb
- oracle学习笔记
caoyong
oracle
1、ORACLE的安装
a>、ORACLE的版本
8i,9i : i是internet
10g,11g : grid (网格)
12c : cloud (云计算)
b>、10g不支持win7
&
- 数据库,SQL零基础入门
天子之骄
sql数据库入门基本术语
数据库,SQL零基础入门
做网站肯定离不开数据库,本人之前没怎么具体接触SQL,这几天起早贪黑得各种入门,恶补脑洞。一些具体的知识点,可以让小白不再迷茫的术语,拿来与大家分享。
数据库,永久数据的一个或多个大型结构化集合,通常与更新和查询数据的软件相关
- pom.xml
一炮送你回车库
pom.xml
1、一级元素dependencies是可以被子项目继承的
2、一级元素dependencyManagement是定义该项目群里jar包版本号的,通常和一级元素properties一起使用,既然有继承,也肯定有一级元素modules来定义子元素
3、父项目里的一级元素<modules>
<module>lcas-admin-war</module>
<
- sql查地区省市县
3213213333332132
sqlmysql
-- db_yhm_city
SELECT * FROM db_yhm_city WHERE class_parent_id = 1 -- 海南 class_id = 9 港、奥、台 class_id = 33、34、35
SELECT * FROM db_yhm_city WHERE class_parent_id =169
SELECT d1.cla
- 关于监听器那些让人头疼的事
宝剑锋梅花香
画图板监听器鼠标监听器
本人初学JAVA,对于界面开发我只能说有点蛋疼,用JAVA来做界面的话确实需要一定的耐心(不使用插件,就算使用插件的话也没好多少)既然Java提供了界面开发,老师又要求做,只能硬着头皮上啦。但是监听器还真是个难懂的地方,我是上了几次课才略微搞懂了些。
- JAVA的遍历MAP
darkranger
map
Java Map遍历方式的选择
1. 阐述
对于Java中Map的遍历方式,很多文章都推荐使用entrySet,认为其比keySet的效率高很多。理由是:entrySet方法一次拿到所有key和value的集合;而keySet拿到的只是key的集合,针对每个key,都要去Map中额外查找一次value,从而降低了总体效率。那么实际情况如何呢?
为了解遍历性能的真实差距,包括在遍历ke
- POJ 2312 Battle City 优先多列+bfs
aijuans
搜索
来源:http://poj.org/problem?id=2312
题意:题目背景就是小时候玩的坦克大战,求从起点到终点最少需要多少步。已知S和R是不能走得,E是空的,可以走,B是砖,只有打掉后才可以通过。
思路:很容易看出来这是一道广搜的题目,但是因为走E和走B所需要的时间不一样,因此不能用普通的队列存点。因为对于走B来说,要先打掉砖才能通过,所以我们可以理解为走B需要两步,而走E是指需要1
- Hibernate与Jpa的关系,终于弄懂
avords
javaHibernate数据库jpa
我知道Jpa是一种规范,而Hibernate是它的一种实现。除了Hibernate,还有EclipseLink(曾经的toplink),OpenJPA等可供选择,所以使用Jpa的一个好处是,可以更换实现而不必改动太多代码。
在play中定义Model时,使用的是jpa的annotations,比如javax.persistence.Entity, Table, Column, OneToMany
- 酸爽的console.log
bee1314
console
在前端的开发中,console.log那是开发必备啊,简直直观。通过写小函数,组合大功能。更容易测试。但是在打版本时,就要删除console.log,打完版本进入开发状态又要添加,真不够爽。重复劳动太多。所以可以做些简单地封装,方便开发和上线。
/**
* log.js hufeng
* The safe wrapper for `console.xxx` functions
*
- 哈佛教授:穷人和过于忙碌的人有一个共同思维特质
bijian1013
时间管理励志人生穷人过于忙碌
一个跨学科团队今年完成了一项对资源稀缺状况下人的思维方式的研究,结论是:穷人和过于忙碌的人有一个共同思维特质,即注意力被稀缺资源过分占据,引起认知和判断力的全面下降。这项研究是心理学、行为经济学和政策研究学者协作的典范。
这个研究源于穆来纳森对自己拖延症的憎恨。他7岁从印度移民美国,很快就如鱼得水,哈佛毕业
- other operate
征客丶
OSosx
一、Mac Finder 设置排序方式,预览栏 在显示-》查看显示选项中
二、有时预览显示时,卡死在那,有可能是一些临时文件夹被删除了,如:/private/tmp[有待验证]
--------------------------------------------------------------------
若有其他凝问或文中有错误,请及时向我指出,
我好及时改正,同时也让我们一
- 【Scala五】分析Spark源代码总结的Scala语法三
bit1129
scala
1. If语句作为表达式
val properties = if (jobIdToActiveJob.contains(jobId)) {
jobIdToActiveJob(stage.jobId).properties
} else {
// this stage will be assigned to "default" po
- ZooKeeper 入门
BlueSkator
中间件zk
ZooKeeper是一个高可用的分布式数据管理与系统协调框架。基于对Paxos算法的实现,使该框架保证了分布式环境中数据的强一致性,也正是基于这样的特性,使得ZooKeeper解决很多分布式问题。网上对ZK的应用场景也有不少介绍,本文将结合作者身边的项目例子,系统地对ZK的应用场景进行一个分门归类的介绍。
值得注意的是,ZK并非天生就是为这些应用场景设计的,都是后来众多开发者根据其框架的特性,利
- MySQL取得当前时间的函数是什么 格式化日期的函数是什么
BreakingBad
mysqlDate
取得当前时间用 now() 就行。
在数据库中格式化时间 用DATE_FORMA T(date, format) .
根据格式串format 格式化日期或日期和时间值date,返回结果串。
可用DATE_FORMAT( ) 来格式化DATE 或DATETIME 值,以便得到所希望的格式。根据format字符串格式化date值:
%S, %s 两位数字形式的秒( 00,01,
- 读《研磨设计模式》-代码笔记-组合模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
abstract class Component {
public abstract void printStruct(Str
- 4_JAVA+Oracle面试题(有答案)
chenke
oracle
基础测试题
卷面上不能出现任何的涂写文字,所有的答案要求写在答题纸上,考卷不得带走。
选择题
1、 What will happen when you attempt to compile and run the following code? (3)
public class Static {
static {
int x = 5; // 在static内有效
}
st
- 新一代工作流系统设计目标
comsci
工作算法脚本
用户只需要给工作流系统制定若干个需求,流程系统根据需求,并结合事先输入的组织机构和权限结构,调用若干算法,在流程展示版面上面显示出系统自动生成的流程图,然后由用户根据实际情况对该流程图进行微调,直到满意为止,流程在运行过程中,系统和用户可以根据情况对流程进行实时的调整,包括拓扑结构的调整,权限的调整,内置脚本的调整。。。。。
在这个设计中,最难的地方是系统根据什么来生成流
- oracle 行链接与行迁移
daizj
oracle行迁移
表里的一行对于一个数据块太大的情况有二种(一行在一个数据块里放不下)
第一种情况:
INSERT的时候,INSERT时候行的大小就超一个块的大小。Oracle把这行的数据存储在一连串的数据块里(Oracle Stores the data for the row in a chain of data blocks),这种情况称为行链接(Row Chain),一般不可避免(除非使用更大的数据
- [JShop]开源电子商务系统jshop的系统缓存实现
dinguangx
jshop电子商务
前言
jeeshop中通过SystemManager管理了大量的缓存数据,来提升系统的性能,但这些缓存数据全部都是存放于内存中的,无法满足特定场景的数据更新(如集群环境)。JShop对jeeshop的缓存机制进行了扩展,提供CacheProvider来辅助SystemManager管理这些缓存数据,通过CacheProvider,可以把缓存存放在内存,ehcache,redis,memcache
- 初三全学年难记忆单词
dcj3sjt126com
englishword
several 儿子;若干
shelf 架子
knowledge 知识;学问
librarian 图书管理员
abroad 到国外,在国外
surf 冲浪
wave 浪;波浪
twice 两次;两倍
describe 描写;叙述
especially 特别;尤其
attract 吸引
prize 奖品;奖赏
competition 比赛;竞争
event 大事;事件
O
- sphinx实践
dcj3sjt126com
sphinx
安装参考地址:http://briansnelson.com/How_to_install_Sphinx_on_Centos_Server
yum install sphinx
如果失败的话使用下面的方式安装
wget http://sphinxsearch.com/files/sphinx-2.2.9-1.rhel6.x86_64.rpm
yum loca
- JPA之JPQL(三)
frank1234
ormjpaJPQL
1 什么是JPQL
JPQL是Java Persistence Query Language的简称,可以看成是JPA中的HQL, JPQL支持各种复杂查询。
2 检索单个对象
@Test
public void querySingleObject1() {
Query query = em.createQuery("sele
- Remove Duplicates from Sorted Array II
hcx2013
remove
Follow up for "Remove Duplicates":What if duplicates are allowed at most twice?
For example,Given sorted array nums = [1,1,1,2,2,3],
Your function should return length
- Spring4新特性——Groovy Bean定义DSL
jinnianshilongnian
spring 4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装Mysql5.5
liuxingguome
centos
CentOS下以RPM方式安装MySQL5.5
首先卸载系统自带Mysql:
yum remove mysql mysql-server mysql-libs compat-mysql51
rm -rf /var/lib/mysql
rm /etc/my.cnf
查看是否还有mysql软件:
rpm -qa|grep mysql
去http://dev.mysql.c
- 第14章 工具函数(下)
onestopweb
函数
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- POJ 1050
SaraWon
二维数组子矩阵最大和
POJ ACM第1050题的详细描述,请参照
http://acm.pku.edu.cn/JudgeOnline/problem?id=1050
题目意思:
给定包含有正负整型的二维数组,找出所有子矩阵的和的最大值。
如二维数组
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
中和最大的子矩阵是
9 2
-4 1
-1 8
且最大和是15
- [5]设计模式——单例模式
tsface
java单例设计模式虚拟机
单例模式:保证一个类仅有一个实例,并提供一个访问它的全局访问点
安全的单例模式:
/*
* @(#)Singleton.java 2014-8-1
*
* Copyright 2014 XXXX, Inc. All rights reserved.
*/
package com.fiberhome.singleton;
- Java8全新打造,英语学习supertool
yangshangchuan
javasuperword闭包java8函数式编程
superword是一个Java实现的英文单词分析软件,主要研究英语单词音近形似转化规律、前缀后缀规律、词之间的相似性规律等等。Clean code、Fluent style、Java8 feature: Lambdas, Streams and Functional-style Programming。
升学考试、工作求职、充电提高,都少不了英语的身影,英语对我们来说实在太重要