- LLaMA3大模型技术全网最全解析——模型架构与训练方法(收录于GPT-4/ChatGPT技术与产业分析)
chenweiPhD
人工智能深度学习语言模型架构
Meta在周四(4月18日)发布了其最新大型语言模型LLaMA3。该模型将被集成到其虚拟助手MetaAI中。Meta自称8B和70B的LLaMA3是当今8B和70B参数规模的最佳模型,并在推理、代码生成和指令跟踪方面有了很大进步。(点赞是我们分享的动力)--------------------------------------------------主编作者陈巍博士,高级职称,曾担任华为系相关自
- 简化版奇异值分解(SVD)方法详解
DuHz
数理统计学知识机器学习人工智能算法信息与通信信号处理
简化版奇异值分解(SVD)方法详解奇异值分解(SVD)是一个强大的矩阵分解工具,广泛应用于数据降维、图像压缩、机器学习等领域。然而,对于大规模数据或高维矩阵,计算和存储的开销非常大,因此提出了多种简化版的SVD方法。这些简化版方法在保证解的精度的同时,能够显著减少计算量和内存占用。本文将详细介绍几种简化版SVD方法,包括经济型SVD、随机化SVD、增量SVD、分块SVD和偏最小二乘法(PLS),并
- 私有AI对话系统实战:基于Ollama+OpenWebUI的DeepSeek-R1本地化部署手把手教学(可共享访问)
Developer-YC
DeekSeek-R1大模型解读与实战教学人工智能pythonjavagithubnode.js语言模型后端
引言:为什么选择本地部署大模型?在数据隐私日益重要的今天,云端AI服务的局限性逐渐显现——敏感信息泄露风险、网络延迟依赖、定制化能力不足。而通过**Ollama(模型管理框架)和OpenWebUI(可视化交互工具)**的组合,开发者可以轻松实现大模型(如DeepSeek-R1)的本地部署,兼顾性能与安全。本文将以DeepSeek-R1为例,详解从环境配置到实战应用的全流程。一、工具与模型简介1.O
- 理论一、大模型—概念
伯牙碎琴
大模型自然语言处理ai
一、总述大模型通常指的是参数规模庞大、训练难度较高的人工智能模型。随着深度学习技术的发展,研究人员和企业越来越倾向于构建更大的模型,以提高模型的性能和泛化能力。这些大模型往往需要大量的数据和计算资源来训练,并且在实际应用中通常表现出色。大模型全称是大型语言模型(LLM,LargeLanguageModel),这个“大”主要指模型结构容量大,结构中的参数多,用于预训练大模型的数据量大。一个大模型可以
- 一、大模型微调的前沿技术与应用
伯牙碎琴
大模型微调人工智能大模型微调Deepseek
大模型微调的前沿技术与应用随着大规模预训练模型(如GPT、BERT、T5等)的广泛应用,大模型微调(Fine-Tuning,FT)成为了提升模型在特定任务中性能的关键技术。通过微调,开发者可以根据实际需求调整预训练模型的参数,使其更好地适应特定应用场景。本文将介绍大模型微调技术的前沿发展,分析不同微调方法的特点、适用场景以及优缺点,并对它们进行系统分类。微调技术的重要性大模型微调能够帮助开发者根据
- 玩转代理模式
清泓y
六大常见设计模式代理模式设计模式c++
文章目录什么是代理模式举例:代理模式结构代理模式适用场景实现方式代理模式的优缺点优点:缺点:什么是代理模式代理模式,主要用途就是代理一个某一个所需要的物件,但是我们不直接使用这个物件,我们用一个代理接口来代替我们使用这个物件。举例:信用卡是银行账户的代理,银行账户则是一大捆现金的代理。它们都实现了同样的接口,均可用于进行支付。消费者会非常满意,因为不必随身携带大量现金;商店老板同样会十分高兴,因为
- 揭秘DeepSeek内幕:清华教授剖析AI模型技术原理
大模型.
人工智能chatgpt安全agigpt大模型deepseek
从ChatGPT到各种新兴的AI模型,每一次技术突破都能引发广泛的关注和讨论——而最近AI界的“新宠”,无疑是DeepSeek。在本文中,清华大学长聘副教授将深入剖析DeepSeekR1背后的大规模强化学习技术及其基本原理,并进一步展望大模型技术未来的发展方向。1、透过DeepSeekR1,看大模型技术的发展趋势今天我将从宏观角度为大家介绍DeepSeekR1所代表的大规模强化学习技术,及其基本原
- 【科普】大模型应用中一个 Token 占多少汉字?答案超乎想象!
大模型.
easyui前端人工智能程序人生语言模型文心一言自然语言处理
先说答案:不同模型可能采用各自的切分方法,因此,一个Token所对应的汉字数量也会有所不同。如腾讯1token≈1.8个汉字,通义千问、千帆大模型等1token=1个汉字,对于英文文本来说,1个token通常对应3至4个字母,不同的模型对相同的输入分词,分词结果是不一样的。同样可以说,一个汉字占约0.5个Token。Token是大模型中最基础、最常见的概念,它既可以是一个完整的单词,也可以是一个
- 大模型产品Deepseek(七)、可视化本地知识库搭建详细教程(Cherry Studio)
伯牙碎琴
大模型DeepSeekAI大模型知识库
完整教程:使用CherryStudio配置OllamaAPI并搭建知识库在本节教程中,我们将通过CherryStudio配置OllamaAPI,并安装嵌入模型bge-m3,以实现知识库的搭建与智能问答功能。具体内容包括CherryStudio的安装、嵌入模型配置、OllamaAPI配置、创建知识库及基于该知识库和通用大模型的提问示例。CherryStudio介绍看这篇文章1.准备工作在开始之前,确
- 国产编辑器EverEdit - 二进制模式下观察Window/Linux/MacOs换行符差异
彩虹小黑馬
妙用编辑器编辑器linuxmacosEverEditEmEditorNotepad
1换行符格式1.1应用场景 稍微了解计算机历史的人都知道,计算机3大操作系统:Windows、Linux/Unix、MacOS,这3大系统对文本换行的定义各不相同,且互不相让,导致在文件的兼容性方面存在一些问题,比如它们对换行的定义:Windows:回车符(CR)+换行符(LF)Linux/Unix:换行符(LF)MacOS:回车符(CR)在Windows上编写的代码,默认使用CR+LF表示换行
- Forrester发布2024年五大网络安全新威胁
岛屿旅人
网络安全web安全网络安全网络安全
文章目录前言一、大选年的叙事(舆论)操控攻击二、深度伪造引发身份安全危机三、生成式人工智能数据泄露四、人工智能软件供应链攻击五、太空成为安全战略高点数据泄露平均成本高达218万美元前言人工智能正重塑网络安全格局,武器化大语言模型正成为首选攻击工具,安全团队在应对武器化人工智能攻击方面将面临日益严峻的挑战。Forrester近日发布《2024年网络安全威胁预测报告》指出,人工智能正重塑网络安全格局,
- AI —— 文字生成图片的逻辑
鱼不知海
AI写作AI作画
事情的起因是我在做一个自用软件时,需要测试文字生成图像的功能。于是就对现在能使用的ai大模型去做了一些尝试。输入几组我的描述性文字其中的一张图片令我大为震撼。(师妹师兄温酒毛驴)问题大家应该可以发现,一位图像人物的下半身时有问题的。同时从人的逻辑上,这种图缺少内核逻辑。在NLP的成熟度如此高的情况下,对描述性文字进行逻辑上的重构并不是太麻烦的事情。豆包扩充文字(在一个宁静的日子里,师兄与师妹并辔而
- DeepSeek崛起:中国AI产业的颠覆者与重构者
:MNongSciFans
人工智能
当DeepSeek以"中国版ChatGPT"的标签横空出世时,这个诞生于杭州的AI新贵仅用三个月时间就完成了从行业黑马到颠覆者的蜕变。其开源大模型DeepSeek-R1在HuggingFace开源大模型排行榜的登顶,不仅意味着技术指标的超越,更预示着中国AI产业格局的深层裂变。这场始于技术突破的产业地震,正在引发资本市场的恐慌性迁徙、技术路线的集体转向以及商业模式的根本性重构。###一、技术奇点的
- DeepSeek正重构具身大模型和人形机器人赛道!
Robot251
重构机器人人工智能科技自动驾驶
中国人工智能公司DeepSeek(深度求索)以“低成本、高效率、强开放”的研发范式横空出世,火遍并震撼全球科技圈;DeepSeek展现出来的核心竞争力,除了低成本及推理能力,更重要的是开源模型能力追赶上了最新的闭源模型;而对具身智能领域影响最大的当属于其开源大模型DeepSeek-R1。2024年1月20日,公司发布全球首个完全通过强化学习训练的专注于推理任务的高性能语言模型DeepSeek-R1
- 内核的驱动模块化编程框架
Andy.w
基于Linux的驱动学习内核模块化编程
1、程序的两大空间:内核层和用户层正常写的代码都是运行在用户层,很难或者根本接触不到内核层。并且用户层看到的地址都是虚拟地址,所以用户层访问不了硬件。内核层离硬件近,虽然它的地址也不是真是的物理地址,但是它能间接访问操作真实的物理地址。其中真实的物理地址代表着硬件。2、内核层驱动的框架#include"linux/kernel.h"#include"linux/module.h"//就相当于标准头
- 大语言模型常用微调与基于SFT微调DeepSeek R1指南
知来者逆
LLM深度学习人工智能自然语言处理DeepSeekSFT微调
概述大型语言模型(LLM,LargeLanguageModel)的微调(Fine-tuning)是指在一个预训练模型的基础上,使用特定领域或任务的数据对模型进行进一步训练,以使其在该领域或任务上表现更好。微调是迁移学习的一种常见方法,能够显著提升模型在特定任务上的性能。在大型语言模型(LLM)的微调中,有几种常见的方法,包括SFT(监督微调)、LoRA(低秩适应)、P-tuningv2和**Fre
- Deepseek详细的自我介绍
welcome_123_
人工智能
###**DeepSeek:中国自研AGI大模型的深度解析**---####**1.技术背景与研发理念**DeepSeek由国内顶尖AI科学家团队领衔,核心技术成员来自清华大学、北京大学及国际顶级AI实验室,团队在NLP、分布式训练、模型压缩等领域发表顶会论文超200篇。研发理念聚焦三个核心:-**高效性**:通过模型架构创新(如MoE)实现“小参数量,大性能”。-**可控性**:内置可解释性模块
- 全国通用初中数学《50大几何模型精讲》免费分享!
小小怪下士yeah
算法
自取链接:https://pan.baidu.com/s/1Mj_nJitAqNnYdX7gWvN_qA?pwd=Qx6a提取码:Qx6a【涵盖中考必考模型】手把手教你吃透初中几何!✅8字型旋转妙解✅将军饮马最短路✅截长补短技巧大全✅手拉手模型全拆解......(共50种核心解题模板)【为什么你需要这份资料?】❶全网独家中考高频模型合集❷图解+口诀记忆零基础也能开窍❸附赠典型例题详解拒绝一听就会一
- 从DeepSeek爆火谈AI如何重塑全球医疗健康价值链
明哲AI
人工智能大模型Deepseek医疗
全球医疗系统正面临前所未有的挑战,成本持续攀升与资源日益短缺的双重压力,如同悬在全球人民头顶的达摩克利斯之剑。而中国,作为全球人口老龄化速度最快的国家之一,医疗供需矛盾显得尤为突出。在此背景下,中国的AI大模型DeepSeek以前沿技术突破与切实可行的商业模式,正悄然重塑医疗健康产业的价值链,预示着AI技术应用最具潜力的变革性场景即将到来。本文由公众号“创见数字健康“”首发,原创作者:明哲。转载请
- DeepSeek推荐未来好就业的十大专业
东锋1.3
人工智能deepseek推荐就业
一、人工智能与数据科学专业聚焦人工智能、大数据技术、计算机科学与技术、机器学习、数据科学与大数据技术等专业,构成了这一前沿领域的核心。这些专业旨在培养学生掌握从数据收集、处理到模型构建、算法优化的全流程能力。就业前景洞察人工智能已广泛渗透到医疗、金融、制造、交通等众多领域。在医疗领域,AI辅助诊断系统帮助医生更精准地识别疾病;金融行业里,智能风控模型有效防范风险。未来,算法工程师负责开发和优化各种
- 详解云桌面3种主流架构
黑客KKKing
网络工程师网络安全架构web安全安全
本文简要介绍下云桌面(云电脑)的3种主流架构:VDI、IDV和VOI,概念、原理和区别,欢迎阅读。云桌面作为桌面办公和云计算融合发展的产物,在一定程度上替代了传统的办公形式。目前阿里云、华为云、移动云、电信云,还有华三、锐捷、中兴等互联网大厂都在积极布局该领域。云桌面的技术原理总体来讲,云桌面和云主机、云手机、云游戏等其他形式的云产品类型是一样的,都是采用虚拟化技术。首先,我们会采购一大批的计算资
- C++开发IDE用VisualStudio好还是QtCreator好?
1号程序媛
Qt开发从零到精通C++开发大全idevisualstudioC++
在熟练使用了VisualStudio和QtCreator之后,我依然认为QtCreator作为C++项目开发IDE的便捷性真的相当杰出。当然了,VisualStudio和QtCreator本身就不是一个量级,VS越做越大,庞大的插件库也使得他能够支持从嵌入式到手机端,从web到脚本,甚至游戏,仿真等等各个领域的开发任务。所以做得大,必然导致很多细节功能没法做得好。相反,Qt的IDE工具QtCrea
- flex 布局:实现一行固定个数,超出强制换行(流式布局)
艾米栗写代码
下班一小时打卡每日复习前端css前端javascript
一、flex布局基础知识flex布局的知识想必不用多说,一些常用的属性如下:设置在父容器上的属性:display:flex,align-items,justify-content,flex-wrap。设置在子容器上的属性,通过flex:1,简写了flex-grow、flex-shrink、flex-basis三个属性。基础知识部分可参考阮大的:二、flex布局常用应用1、垂直居中通过align-i
- 文心一言 ,免费使用
悟空码字
AI百度AI百度文心一言
大家好,我是小悟。百度官方公众号发布消息,文心一言宣布自4月1日起全面免费开放,PC端和APP端用户均可体验其最新模型。随着文心大模型的迭代升级和成本不断下降,文心一言将于4月1日零时起,全面免费,所有PC端和APP端用户均可体验文心系列最新模型。与此同时,文心一言上线深度搜索功能。该功能也将于4月1日起免费开放使用。深度搜索功能,具备更强大的思考规划和使用外部工具能力,可为用户提供专家级内容回复
- 什么是 Ollama?如何安装运行?一文讲清
程序员老冉
人工智能开源语言模型学习程序员创富产品经理面试
什么是Ollama?Ollama是一个可以在本地部署和管理开源大语言模型的框架,由于它极大的简化了开源大语言模型的安装和配置细节,一经推出就广受好评,目前已在github上获得了46kstar。不管是著名的羊驼系列,还是最新的AI新贵Mistral,等等各种开源大语言模型,都可以用Ollama实现一键安装并运行,支持的更多模型的列表可以查看Ollama官网。ModelParametersSizeD
- Deepseek与中医:当全球AI遇上世界中医(一)
明哲AI
AI与医疗人工智能deepseek大模型中医
近日与多位中医朋友进行深度交流,探讨Deepseek的使用感受、在中医临床诊疗中的应用价值等。DeepSeek的爆红现象促使传统中医界重新审视AI技术的革新力量,但在实际应用过程中,行业也面临诸多挑战。本文旨在探讨:当前以DeepSeek为代表的大模型在中医辅助诊疗中的实际效能评估,以及未来中医AI发展的可能路径。本文将基于实证调研展开论述,欢迎共同探讨。(本文观点仅代表个人观点,旨在抛砖引玉,欢
- 2025年大模型与Transformer架构:技术前沿与未来趋势报告
和老莫一起学AI
transformer架构深度学习人工智能产品经理学习大模型
_“欧米伽未来研究所”关注科技未来发展趋势,研究人类向欧米伽点演化过程中面临的重大机遇与挑战。将不定期推荐和发布世界范围重要科技研究进展和未来趋势研究。在人工智能的宏大版图中,Transformer架构无疑是一颗璀璨的明星。它的出现,彻底改变了自然语言处理、计算机视觉等诸多领域的发展轨迹。《2025年大模型与Transformer架构:技术前沿与未来趋势报告》深入剖析了Transformer架构的
- AI 大模型创业:如何利用市场优势?
SuperAGI2025
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
AI大模型创业:如何利用市场优势?1.背景介绍随着人工智能技术的不断发展,大模型(LargeModels)在商业化应用中日益受到关注。大模型是指在特定领域中应用广泛、参数量巨大的神经网络模型,如BERT、GPT-3、DALL-E等。这些大模型通过在大规模数据集上进行预训练,具备强大的泛化能力和适应性,能够广泛应用于自然语言处理(NLP)、计算机视觉(CV)、生成对抗网络(GAN)等多个领域。然而,
- 自学网络安全(黑客技术)2024年 —100天学习计划
帝王挥剑指天下
C++web安全学习网络
基于入门网络安全/黑客打造的:前言什么是网络安全网络安全可以基于攻击和防御视角来分类,我们经常听到的“红队”、“渗透测试”等就是研究攻击技术,而“蓝队”、“安全运营”、“安全运维”则研究防御技术。如何成为一名黑客很多朋友在学习安全方面都会半路转行,因为不知如何去学,在这里,我将这个整份答案分为黑客(网络安全)入门必备、黑客(网络安全)职业指南、黑客(网络安全)学习导航三大章节,涉及价值观、方法论、
- 软考高级信息系统项目管理师第四版目录
月梦工作室
软考高级信息系统项目管理师专栏信息系统项目管理师
软考高级信息系统项目管理师教程《信息系统项目管理师教程第4版》,全书共24个章节,页数为731页,相比第三版教程页数有所减少(第3版教程有900多页)。根据第4版教程目录来看(详细目录请看下文),大幅度增加了技术部分内容(前面5章都是技术知识),而管理部分还是以十大管理领域为框架,并没有参考最新的PMP第7版来,所以虽然新版教程出来了,但是大部分管理部分知识与第3版是相差不大的。信息系统项目管理师
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><