- 结构性变革与新兴机遇
倒霉男孩
经济学
近年来,全球就业市场正经历深刻的结构性变革。受技术进步、产业升级、人口结构变化及全球经济格局调整的影响,传统就业模式被重塑,新的职业机会不断涌现。本文将分析当前就业市场的主要趋势,并探讨其对劳动者、企业和政策制定者的启示。###**一、技术驱动下的就业结构变化**1.**人工智能与自动化替代部分传统岗位**-麦肯锡全球研究院预测,到2030年,全球约14%的劳动者(3.75亿人)可能因自动化技术而
- 大数据未来发展的趋势与挑战
倒霉男孩
大数据
随着信息技术的飞速发展,大数据已经成为推动社会进步和产业变革的重要力量。从商业决策到医疗健康,从智慧城市到人工智能,大数据技术的应用无处不在。未来,随着5G、物联网(IoT)、人工智能(AI)等技术的深度融合,大数据的发展将迎来更广阔的空间,同时也面临诸多挑战。本文将探讨大数据未来的发展趋势、应用前景以及可能面临的问题。一、大数据未来的发展趋势数据量持续爆发式增长随着5G网络的普及和物联网设备的广
- Python知识点:如何使用Nvidia Jetson与Python进行边缘计算
杰哥在此
Python系列python边缘计算开发语言面试编程
开篇,先说一个好消息,截止到2025年1月1日前,翻到文末找到我,赠送定制版的开题报告和任务书,先到先得!过期不候!如何使用NvidiaJetson与Python进行边缘计算NvidiaJetson平台是专为边缘计算设计的一系列AI计算机,它们能够处理和分析来自物联网(IoT)设备和边缘节点的数据。这些设备小巧、节能且功能强大,非常适合用于执行机器学习、计算机视觉和自然语言处理等任务。Python
- 未来运维,绝绝AI 必备
AI_运维_攻城狮
ai运维人工智能
在当今数字化时代,运维工作对于企业的稳定运行至关重要。随着科技的不断进步,人工智能(AI)和自动化技术正逐渐改变着运维行业的面貌。本文将分析运维行业的未来发展方向,探讨人工智能在运维中的应用前景、自动化运维的发展趋势,并对未来的运维工作模式和技能需求进行预测和分析,以帮助读者更好地规划自己的职业发展。一、运维行业现状目前,运维工作主要包括服务器管理、网络管理、数据库管理、应用程序监控等方面。运维工
- AI人工智能领域:Bard的崛起之路
AIGC应用创新大全
人工智能bardai
AI人工智能领域:Bard的崛起之路关键词:Bard、GoogleAI、大语言模型、对话式AI、自然语言处理、生成式AI、AI竞争摘要:本文深入探讨GoogleBard的发展历程、技术架构及其在AI领域的地位。我们将从Bard的诞生背景开始,分析其核心技术原理,比较与其他大语言模型的异同,并通过实际案例展示其应用场景。最后展望Bard的未来发展方向及面临的挑战。背景介绍目的和范围本文旨在全面解析G
- AI人工智能领域深度学习的跨模态检索技术
AI学长带你学AI
AI人工智能与大数据应用开发AI应用开发高级指南人工智能深度学习ai
AI人工智能领域深度学习的跨模态检索技术关键词:跨模态检索、深度学习、多模态学习、特征提取、相似度计算、注意力机制、Transformer摘要:本文深入探讨了AI领域中基于深度学习的跨模态检索技术。我们将从基础概念出发,详细分析跨模态检索的核心算法原理、数学模型和实际应用。文章包含完整的Python实现示例,展示如何构建一个跨模态检索系统,并讨论当前的技术挑战和未来发展方向。通过本文,读者将全面理
- 机器视觉:ransac算法详解
无水先生
数字图形和图像处理算法计算机视觉
目录一、说明:二、算法步骤三、算法代码四、其它补充一、说明:RANSAC是一种常用的参数估计方法,全称为RandomSampleConsensus(随机抽样一致性)。它通过随机选择数据中的一部分,然后根据这些数据拟合模型,统计模型与其他数据的偏差,最终筛选出符合一定阈值的数据,用于估计参数。RANSAC可以应用于很多领域,如计算机视觉、机器人和地理信息系统等。其优点在于对噪声数据和异常值有很强的鲁
- Python程序设计 第6章:函数和函数式编程
若北辰
Python程序设计python开发语言
Python程序设计Python是全球范围内最受欢迎的编程语言之一,学好Python将对个人职业生涯产生很大的助力,Python在机器学习、深度学习、数据挖掘等领域应用极为广泛。在数据科学家/数据分析师、人工智能工程师、网络安全工程师、软件工程师/全栈工程师、自动化测试工程师等岗位,年入50万,很普遍,学好Python,高薪就业不是问题,因此推出Python程序设计系列文章:Python程序设计第
- 什么是神经网络和机器学习?【云驻共创】
一键难忘
人工智能机器学习深度学习神经网络网络
什么是神经网络和机器学习?一.背景在当今数字化浪潮中,神经网络和机器学习已成为科技领域的中流砥柱。它们作为人工智能的支柱,推动了自动化、智能化和数据驱动决策的进步。然而,对于初学者和专业人士来说,理解神经网络和机器学习的本质是至关重要的。在本文中,我们将深入探讨这两个概念的内涵、工作原理以及彼此之间的联系。二.神经网络和机器学习简介神经网络和机器学习都是人工智能领域中的重要概念,它们通常用于解决各
- AI人工智能与OpenCV:实现智能图像编辑功能
AI智能探索者
AIAgent智能体开发实战人工智能opencv计算机视觉ai
AI人工智能与OpenCV:实现智能图像编辑功能关键词:人工智能、OpenCV、图像处理、计算机视觉、深度学习、智能编辑、图像增强摘要:本文深入探讨如何结合人工智能(AI)和OpenCV实现智能图像编辑功能。我们将从基础概念出发,详细介绍核心算法原理,展示实际代码实现,并分析典型应用场景。文章将涵盖从传统图像处理技术到深度学习方法的演进,重点讲解如何利用OpenCV和AI模型实现自动化的图像增强、
- Orangepi Zero2 全志H616开发学习
会学嵌入式
ARMLinux全志平台开发学习linux开发语言服务器
一.简介1.1为什么学学习目标依然是Linux系统,平台是ARM架构·蜂巢快递柜,配送机器人,这些应用场景用C51,STM32单片机无法实现·第三方介入库的局限性,比如刷脸支付和公交车收费设备需要集成支付宝SDK,提供的libalipay.so是Linux的库,设备必须跑Linux系统·图像识别,音频,视频等领域的技术支撑也无法脱离Linux系统·人工智能型设备通常需要更好的系统和更高的算力,所以
- 人工智能-基础篇-2-什么是机器学习?(ML,监督学习,半监督学习,零监督学习,强化学习,深度学习,机器学习步骤等)
weisian151
人工智能人工智能机器学习学习
1、什么是机器学习?机器学习(MachineLearning,ML)是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析等数学理论。其核心目标是让计算机通过分析数据,自动学习规律并构建模型,从而对未知数据进行预测或决策,而无需依赖显式的程序指令。基本思想:通过数据驱动的方式,使系统能够从经验(数据)中改进性能,形成对数据模式的抽象化表达。基本概念:模型:模型是对现实世界现
- 2025年AI十大趋势:从多模态大模型到自主智能体
zhuzhi
人工智能大数据
2025年AI十大趋势:从多模态大模型到自主智能体人工智能技术正以前所未有的速度重塑着我们的世界。2025年,AI领域将迎来一系列突破性进展,从多模态大模型的全面进化到自主智能体的广泛应用,这些技术变革正在重新定义人机交互的边界。本文将系统梳理2025年AI发展的十大核心趋势,为读者揭示人工智能技术的最新发展方向及其对社会各领域的深远影响。趋势一:多模态大模型成为基础设施2025年,多模态大模型已
- 前端计算机视觉:使用 OpenCV.js 在浏览器中实现图像处理
亿只小灿灿
前端OpenCV前端计算机视觉opencv
一、OpenCV.js简介与环境搭建OpenCV(OpenSourceComputerVisionLibrary)是一个强大的计算机视觉库,广泛应用于图像和视频处理领域。传统上,OpenCV主要在后端使用Python或C++等语言。但随着WebAssembly(Wasm)技术的发展,OpenCV也有了JavaScript版本——OpenCV.js,它可以直接在浏览器中高效运行,为前端开发者提供了前
- 对话式AI助手的巅峰对决:ChatGPT与文心一言的实用价值探讨
酷钉
chatgpt人工智能
随着人工智能技术的发展,对话式AI助手逐渐成为了人们生活中的一部分。其中,ChatGPT和文心一言更是备受关注的两款对话式AI助手。本文将探讨这两款AI助手的实用价值,并通过案例和数据的方式进行分析。一、ChatGPT的实用价值跨语言交流ChatGPT是一款能够进行跨语言交流的对话式AI助手。据统计,ChatGPT支持的语言数量超过100种,用户可以通过它轻松地与不同国家和地区的人进行交流。例如,
- 微信小程序|流浪动物救助小程序的设计与实现
qq_469603589
微信小程序小程序微信小程序
作者主页:编程指南针作者简介:Java领域优质创作者、CSDN博客专家、CSDN内容合伙人、掘金特邀作者、阿里云博客专家、51CTO特邀作者、多年架构师设计经验、腾讯课堂常驻讲师主要内容:Java项目、Python项目、前端项目、人工智能与大数据、简历模板、学习资料、面试题库、技术互助收藏点赞不迷路关注作者有好处文末获取源码项目编号:L-BS-XZBS-30一,环境介绍语言环境:Java:jdk1
- 如何禁止GPTBot等爬虫爬取网站内容:保护数据安全的实用指南
淮橘√
人工智能
引言随着人工智能技术的快速发展,网络爬虫(如OpenAI的GPTBot、GoogleBot、Anthropic的ClaudeBot等)被广泛用于抓取网站数据以训练AI模型或索引内容。然而,部分网站管理员可能不希望自己的内容被爬虫抓取,原因包括保护原创内容、降低服务器负载或防止数据被滥用。一、为什么需要禁止爬虫?网络爬虫可能带来以下问题:内容盗用风险:原创内容可能被AI模型或其他服务未经授权使用。服
- Java 与 AI 携手,掀起多领域智能变革浪潮
WangRK_
人工智能java开发语言
在数字化转型的时代浪潮下,技术更新迭代速度超乎想象。当Java这门历经二十余年沉淀的编程语言,遇上风头正劲的人工智能(AI),一场席卷多领域的智能变革正悄然发生。尤其是在金融与零售两大行业,这场技术融合带来的改变,正重塑着整个行业的生态。一、Java在金融与零售行业的“前世今生”(一)曾经的行业基石在金融领域,Java堪称“代码钢铁侠”,是金融基础设施的坚实支柱。全球顶级交易所依靠Java强大的性
- java opencv 数字识别算法_[机器学习]基于OpenCV实现最简单的数字识别
后期小雨
javaopencv数字识别算法
本文将基于OpenCV实现简单的数字识别。这里以游戏AngryBirds为例,通过以下几个主要步骤对其中右上角的分数部分进行自动识别。1.学习分类器根据训练样本,选取模型训练产生数字分类器。这里的样本可以是通用的数字样本库(如NIST等),也可以是针对应用场景而制作的专门训练样本。前者优在泛化性,后者强在准确率,当然常用做法是将这两者结合,即在通用数字库基础上做修改。另外这里由于模式并不复杂,计算
- 筑牢医疗AI安全防线:四重防护体系全解析
Allen_Lyb
数智化教程(第二期)人工智能安全
一、引言:医疗AI发展中的安全困境在数字化浪潮席卷下,医疗领域正经历着一场由人工智能(AI)驱动的深刻变革。医疗AI凭借其强大的数据分析与处理能力,在疾病诊断、药物研发、健康管理等诸多环节展现出巨大潜力,成为推动医疗行业进步的关键力量。而这一切的背后,医疗数据作为AI发展的“燃料”,以及AI算力作为运行的“引擎”,起着不可或缺的核心作用。医疗数据涵盖了患者从基本信息、病史、症状描述到各种检查检验报
- OpenCV CUDA模块设备层-----双曲正切函数tanh()
村北头的码农
OpenCVopencv人工智能计算机视觉
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述OpenCV的CUDA模块(cudev)中的一个设备函数,用于在GPU上对uchar4类型的向量(如RGBA像素)进行双曲正切(hyperbolictangent)运算,并返回一个float4类型的结果。函数原型__device____forceinline__f
- OpenCV CUDA模块设备层-----二值化阈值操作函数thresh_binary_func()
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述OpenCV的CUDA模块(cudev)中的一个设备和主机通用函数(host/devicefunction),用于创建一个二值化阈值操作函数对象(functor)。这个函数返回一个仿函数(functor),用于在GPU上执行二值化阈值处理(ThresholdBin
- Python 爬虫实战:从图片网站抓取图片并进行特征提取(2025 最新版)
Python爬虫项目
2025年爬虫实战项目python爬虫开发语言githubchrome数据库
一、引言在当今的数字时代,图像数据在各个领域中扮演着至关重要的角色。无论是计算机视觉、机器学习,还是数据分析,图像数据的获取和处理都是基础。然而,获取大量高质量的图像数据并非易事。幸运的是,互联网上充斥着丰富的图像资源,只需借助合适的工具和技术,我们就能高效地从中获取所需的图像数据。本文将详细介绍如何使用Python构建一个完整的爬虫系统,从图片网站抓取图像,并对其进行特征提取。我们将涵盖从网页分
- Open AI在AI人工智能领域的技术安全防护体系
AI智能探索者
AIAgent智能体开发实战人工智能安全网络ai
OpenAI在AI人工智能领域的技术安全防护体系关键词:OpenAI、AI安全、技术防护、伦理框架、模型对齐、数据隐私、对抗攻击摘要:本文将深入探讨OpenAI在人工智能领域构建的多层次技术安全防护体系。我们将从基础概念出发,逐步解析OpenAI如何通过技术创新和系统设计来确保AI系统的安全性、可靠性和可控性。文章将涵盖从数据安全到模型对齐,从伦理框架到实际防护技术的全方位内容,帮助读者全面理解现
- 揭秘自然语言处理在AI人工智能领域的奥秘
AI智能探索者
AIAgent智能体开发实战人工智能自然语言处理easyuiai
揭秘自然语言处理在AI人工智能领域的奥秘关键词:自然语言处理、AI人工智能、语言理解、语言生成、语义分析摘要:本文深入探讨了自然语言处理(NLP)在AI人工智能领域的奥秘。首先介绍了自然语言处理的背景,包括目的、预期读者、文档结构和相关术语。接着阐述了自然语言处理的核心概念与联系,通过文本示意图和Mermaid流程图进行展示。详细讲解了核心算法原理和具体操作步骤,并用Python源代码进行阐述。分
- 【LangChain编程:从入门到实践】AI 大模型检索增强生成 RAG 实践
AI智能应用
Python入门实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
LangChain编程:从入门到实践-AI大模型检索增强生成RAG实践关键词:LangChain,RAG,大语言模型,检索增强生成,向量数据库,嵌入模型,提示工程1.背景介绍在人工智能和自然语言处理领域,大语言模型(LargeLanguageModels,LLMs)的出现无疑是一个重大突破。像GPT-3、GPT-4这样的模型展现出了惊人的语言理解和生成能力,为各种应用场景带来了无限可能。然而,这些
- 基于OpenCv的运动物体检测算法
Liu_LongPo
计算机视觉OpenCv运动物体检测
基于一个实现的基于OpenCv的运动物体检测算法,可以用于检测行人或者其他运动物体。#include#include#include#includeintmain(intargc,char**argv){//声明IplImage指针IplImage*pFrame=NULL;IplImage*pFrImg=NULL;IplImage*pBkImg=NULL;CvMat*pFrameMat=NULL;
- AI离全社会普及,只差一个计算中心?
a13163944010
人工智能
过去十年,人工智能(AI)大爆炸,并第一次走进普通人的生活。但蓬勃发展的AI却碰到一个空前棘手的问题:自2012年以来,AI算力需求6年增长30万倍,远超摩尔定律!人类现有的基础设施,已跟不上AI算力需求的增长。未来,该怎么办?【1】一百多年前,人类也曾面临同样的难题。1866年,德国西门子发明自激发电机,开启了人类的电力时代。此后十几年,虽然很多企业纷纷采用电能这种新的动力,但一台电机只能供应一
- 首次使用“非英伟达”芯片!OpenAI租用谷歌TPU,降低推理计算成本
加百力
科技知识财经研究人工智能chatgpt
OpenAI近期开始租用谷歌TPU芯片,这是该公司首次大规模使用非英伟达芯片。除了OpenAI外、苹果、SafeSuperintelligence和Cohere等公司也一直租用谷歌云的TPU。英伟达的芯片主导地位正被侵蚀,OpenAI租用谷歌TPU,为首次大规模使用“非英伟达”芯片。周六,据媒体报道,作为全球最大的人工智能芯片客户之一,OpenAI近期开始租用谷歌的TPU芯片为ChatGPT等产品
- AI人工智能 神经网络
马里亚纳海沟网
人工智能神经网络深度学习笔记运维全文检索搜索引擎
**AI人工智能神经网络概述**神经网络是并行计算设备,它们试图构建大脑的计算机模型。背后的主要目标是开发一个系统来执行各种计算任务比传统系统更快。这些任务包括模式识别和分类,近似,优化和数据聚类什么是人工神经网络(ANN)人工神经网络(ANN)是一个高效的计算系统,其核心主题是借用生物神经网络的类比。人工神经网络也被称为人工神经系统,并行分布式处理系统和连接系统。ANN获取了大量以某种模式相互连
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><