1、创建python虚拟环境
打开命令行或终端,然后导航到你希望存放虚拟环境的位置。接着,运行以下命令来创建一个新的虚拟环境:
python -m venv test-env
激活虚拟环境
C:\Users\Administrator\test-env\Scripts\activate
关闭虚拟环境
C:\Users\Administrator\test-env\Scripts\deactivate
2、进入yolo下载地址https://github.com/ultralytics/yolov5
下载yolov5源码
git clone https://github.com/ultralytics/yolov5 # clone
下载yolo依赖
cd yolov5
C:\Users\Administrator\test-env\Scripts\activate #切换虚拟环境
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple #添加清华源
下载yolo的yolov5s.pt文件:https://download.csdn.net/download/qq_23350817/89709700
3、python代码实现图片识别
import torch
# Model
model = torch.hub.load("ultralytics/yolov5", "yolov5s") # or yolov5n - yolov5x6, custom
# Images
img = "D:\\yolo\\ultralytics-yolo\\bus.jpg" # or file, Path, PIL, OpenCV, numpy, list
# Inference
results = model(img)
# Results
results.print() # or .show(), .save(), .crop(), .pandas(), etc.
results.show()
4、python命令行实现图片识别
python detect.py --weights yolov5s.pt --source 'D:\\yolo\\ultralytics-yolo\\picture\\bus.jpg'
5、python命令行实现视频文件识别
python detect.py --weights yolov5s.pt --source 'D:\\yolo\\ultralytics-yolo\\video\\1.mp4'
命令行运行的结果将保存到yolov5/runs/detect
目录下。
6 、python命令行实现RTSP流识别:
python detect.py --weights yolov5s.pt --source "rtsp://admin:[email protected]:554/h264/ch1/main/av_stream"
volov5支持的命令行输出格式:
python detect.py --weights yolov5s.pt --source 0 # webcam
img.jpg # image
vid.mp4 # video
screen # screenshot
path/ # directory
list.txt # list of images
list.streams # list of streams
'path/*.jpg' # glob
'https://youtu.be/LNwODJXcvt4' # YouTube
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream