- 机器学习中的 K-均值聚类算法及其优缺点
平凡而伟大.
机器学习机器学习算法均值算法
K-均值聚类是一种常用的无监督学习算法,用于将数据集中的样本分成K个簇。其基本原理是将所有样本点划分到K个簇使得簇内样本点之间的距离尽可能接近,而不同簇之间的距离尽可能远。算法流程如下:随机选择K个样本点作为初始的聚类中心。将每个样本点分配到与其最近的聚类中心所在的簇。更新每个簇的聚类中心为该簇所有样本点的平均值。重复第2步和第3步,直到聚类中心不再变化或者达到最大迭代次数。优点:简单且易于实现。
- 机器学习之KMeans算法
知舟不叙
机器学习算法kmeans
文章目录引言1.KMeans算法简介2.KMeans算法的数学原理3.KMeans算法的步骤3.1初始化簇中心3.2分配数据点3.3更新簇中心3.4停止条件4.KMeans算法的优缺点4.1优点4.2缺点5.KMeans算法的应用场景5.1图像分割5.2市场细分5.3文档聚类5.4异常检测6.Python实现KMeans算法7.总结引言KMeans算法是机器学习中最经典的无监督学习算法之一,广泛应
- PHP前置知识-HTML学习
freesec
html学习前端
HTML学习1、因特网和万维网1.1、Internet因特网:全球资源的总汇,连接网络的网络1.2、TCP/IP协议簇:传输层/网络层协议1.3、万维网:www(worldwideweb)HTTP超文本传输协议作用:接受和发布HTMl页面URL统一资源定位符协议://域名:端口号/文件路径/文件名.文件后缀http://www.QQ.com.cn:80/tq/index.html1.4、W3C组织
- TCP/IP协议栈全解析:从分层模型到核心协议
学习的时候
网络tcp/ip网络服务器
TCP/IP(TransmissionControlProtocol/InternetProtocol)是互联网的核心协议簇,定义了数据如何在网络中传输。本文将深入探讨TCP/IP的七层模型与五层架构、DNS与FTP等协议的工作原理,以及TCP的三次握手与四次挥手过程及其报文结构。目录一、TCP/IP协议族概述二、OSI七层模型与五层架构OSI七层模型框架TCP/IP五层架构TCP/IP协议的应用
- 达梦数据库体系架构
客观花絮说
达梦数据库数据库架构
提示:本文内容包含达梦数据库体系架构基本知识。文章目录前言一、DM逻辑结构1.1逻辑存储数据结构关系1.2表空间1.3页1.4簇1.5段1.51数据段1.52临时段1.53回滚段二、DM物理结构2.1配置文件2.2控制文件2.3数据文件2.4重做日志文件2.5归档日志文件2.6逻辑日志文件2.7物理逻辑日志文件2.8备份文件2.9SQL日志文件2.10事件日志文件三、DM内存结构3.1内存池3.1
- Python精进系列: K-Means 聚类算法调用库函数和手动实现对比分析
进一步有进一步的欢喜
Python精进系列算法pythonkmeans
一、引言在机器学习领域,聚类分析是一种重要的无监督学习方法,用于将数据集中的样本划分为不同的组或簇,使得同一簇内的样本具有较高的相似性,而不同簇之间的样本具有较大的差异性。K-Means聚类算法是最常用的聚类算法之一,它以其简单性和高效性在数据挖掘、图像分割、模式识别等领域得到了广泛应用。本文将详细介绍K-Means聚类算法,并分别给出调用现成函数和不调用任何现成函数实现K-Means聚类的代码示
- 【Python机器学习】2.2. 聚类分析算法理论:K均值聚类(KMeans Analysis)、KNN(K近邻分类)、均值漂移聚类(MeanShift)
SomeB1oody
Python机器学习机器学习算法python聚类分类算法
喜欢的话别忘了点赞、收藏加关注哦(关注即可查看全文),对接下来的教程有兴趣的可以关注专栏。谢谢喵!(=・ω・=)2.2.1.K均值聚类(KMeansAnalysis)K均值算法是以空间中K个点为中心进行聚类,对最靠近他们的对象归类,是聚类算法中最为基础但也最为重要的算法。数学原理计算数据点与各簇中心点的距离:dist(xi,ujt){dist}(x_i,u_j^t)dist(xi,ujt)然后根据
- 【Java网络编程】OSI七层网络模型与TCP/IP协议簇
xiaoli8748_软件开发
网络通信网络tcp/ip网络协议
1.1、OSI七层网络模型OSI七层网络模型中,每层的功能如下:应用层:人与计算机网络交互的窗口。表示层:负责数据格式的封装,如加密、压缩、编解码等。会话层:建立、终止、管理不同端间的会话连接。传输层:提供端到端(两台机器)之间的传输机制,以及提供流量控制、出错效验。网络层:逻辑寻址,IP地址,在下两层的基础上向资源子网提供服务。数据链路层:负责建立和管理节点间的链路,将数据封装成帧,进行可靠传输
- Mysql-InnoDB索引:普通索引、主键索引、唯一索引、组合索引
豪大大ya
mysql数据库java
InnoDB和MyISAM的区别事务方面InnoDB支持事务,MyISAM不支持事务。这是Mysql将默认存储引擎从MyISAM变成InnoDB的重要原因之一外键方面InnoDB支持外键,而MyISAM不支持。对一个包含外键的InnoDB表转为MyISAM会失败索引层面InnoDB是聚集(聚簇)索引,MyISAM是非聚集(非聚簇)索引。MyISAM支持FULLTEXT类型的全文索引。InnoDB不
- KMeans实战——聚类和轮廓系数评估啤酒数据集
巷955
机器学习人工智能
原理:在数据分析和机器学习中,聚类是一种常用的无监督学习方法,用于将数据集中的样本划分为若干个簇,使得同一簇内的样本相似度较高,而不同簇之间的样本相似度较低。KMeans算法是其中最常用的聚类算法之一。本文将介绍如何使用KMeans算法对啤酒数据集进行聚类,并使用轮廓系数(SilhouetteScore)来评估聚类结果的质量。1.数据准备首先,我们需要导入必要的库并加载数据集。本文使用的数据集是一
- K-means 算法核心原理
code 旭
AI人工智能学习算法kmeans机器学习
一、K-means算法核心原理1.算法目标将n个样本划分到k个簇中,使得每个样本到所属簇中心的距离平方和最小。2.数学公式目标函数(SSE,簇内平方误差):J=∑i=1k∑x∈Ci∥x−μi∥2J=\sum_{i=1}^k\sum_{x\inC_i}\|x-\mu_i\|^2J=i=1∑kx∈Ci∑∥x−μi∥2其中:CiC_iCi表示第iii个簇μi\mu_iμi表示第iii个簇的质心二、算法步
- 机器学习之KMeans算法
Mr终游
机器学习机器学习算法kmeans
目录一、KMeans的核心思想二、KMeans算法流程三、KMeans的关键点1.优点:2.缺点:四、如何确定最佳k值1.肘部法则2.轮廓系数五、Kmeans的典型应用场景六、代码示例KMeans是一种广泛使用的无监督学习算法,主要用于聚类分析(Clustering)。它的目标是将数据集划分为K个互不重叠的子集(簇,Cluster),使得同一簇内的数据点尽可能相似,不同簇之间的数据点尽可能差异显著
- 聚类分析|k-means聚类方法及其Python实现
皖山文武
数据挖掘商务智能kmeans聚类python数据挖掘机器学习
k-means聚类方法及其Python实现0.k-means算法简介1.k-means算法工作原理2.k-means算法流程3.k–means算法的Python实现0.k-means算法简介k-means算法由MacQueen在1967年提出。是一种经典的基于划分的聚类方法。划分方法(PartitioningMethod)是基于距离判断样本相似度,通过不断迭代将含有多个样本的数据集划分成若干个簇,
- 数据库存储引擎中 InnoDB 和 MyISAM 的区别?
Code额
SQL数据库存储引擎
InnoDB和MyISAM的区别?InnoDB和MyISAM是MySQL数据库中两种常用的存储引擎,它们各自具有不同的特点和适用场景。以下是它们之间的一些主要区别:InnoDB天生支持事务:提供了完整的提交、回滚和崩溃恢复能力;支持物理外键:有助于保持数据的参照完整性;天生支持行锁:允许更高的并发性,因为只有修改的特定行被锁定,其他行仍可以进行读写操作;手动支持表锁;使用聚簇(集)索引:索引跟数据
- mysql面试知识点
mysql
leftjoin和innerjoin区别leftjoin在右表没有匹配项的时候,会将左表拼接上右表,右表的字段以null填充。innerjoin在右表没有匹配项的时候,该结果不显示innoDB默认的存储引擎支持事务、支持物理外键天生支持行锁、手动支持表锁使用聚簇索引(索引和数据在同一个文件)索引概念一种排好序,能够提升查询性能的数据结构分类聚簇索引(主键索引)索引和行数据都在一个叶子节点上非聚簇索
- TCP/IP 5层协议簇:网络层(ICMP协议)
听风吹等浪起
计算机网络学习笔记tcp/ip网络服务器
1.TCP/IP5层协议簇如下:和ip协议有关的才有ip头2.ICMP协议ICMP协议没有端口号,因为不去上层,上层协议采用端口号
- 网络层协议总览
TABE_
计算机网络网络tcp/ipudp网络层协议
这里写目录标题IPARP(地址解析协议)ICMP(网际控制报文协议)路由选择协议NAT(网络地址转换协议)网络层的主要协议包括IP、ARP、RARP、ICMP、IGMP以及各种路由选择协议等。IPIP协议是TCP/IP协议簇中的核心协议,也是TCP/IP的载体。所有的TCP,UDP,ICMP及IGMP数据都以IP数据报格式传输。IP协议是TCP/IP协议族的动力,它为上层协议提供无状态、无连接、不
- 模型参数超 RFdiffusion 5 倍!英伟达等发布 Proteina,从头设计蛋白质主链性能达 SOTA
hyperai
自上个世纪以来,科学家们便投身于依据氨基酸序列来预测蛋白质结构的探索之中,并怀揣着利用氨基酸创造全新蛋白质、构建生命蓝图的愿景。然而,这项宏伟的使命在时间的长河中进展缓慢,直至近几年,随着AI技术的迅猛发展,才如同被注入强劲动力,驶入发展快车道。自2016年以来,由分子之心创始人兼首席科学家许锦波等人开启的一场科技革命,正悄然改变着这一领域。他们开创性地将深度残差网络ResNet架构引入结构预测领
- 中科大《计算机网络》1.1什么是Internet笔记
镜中人★
中科大计算机网络笔记计算机网络笔记网络
什么是Internet1.网络核心概念与术语1.1网络与互联网的本质区别对比维度网络(Network)互联网(Internet)定义任意互连的计算设备集合(如局域网)由多个网络通过路由器互联形成的全球性网际网络组成单一管理域内的设备(如企业网)跨管理域的网络联盟(如ISP、跨国企业网)协议标准可自定义(如私有协议)强制遵循TCP/IP协议簇典型示例家庭WiFi、校
- 聚类算法(K-means)代码实现(鸢尾花数据集)
乔大将军
机器学习算法聚类kmeanspython
目录一、前言二、代码实现1.随即给定初始点并返回,其点个数就是K值2.得到当前每一个样本到K个中心点的距离,得到每个样本距离最近的那个中心点并返回中心点3.更新中心点并返回4.进行训练(迭代)返回最后一次的中心点和簇类中的样本(每个样本距离最近的中心点)5.完整代码三、应用案例1.代码实现2.结果显示3.K=3的聚类结果4.K=4的聚类结果5.总结一、前言本文主要实现K-means这一算法,根据聚
- AI人工智能机器学习之聚类分析
rockfeng0
人工智能机器学习sklearn
1、概要 本篇学习AI人工智能机器学习之聚类分析,以KMeans、AgglomerativeClustering、DBSCAN为例,从代码层面讲述机器学习中的聚类分析。2、聚类分析-简介聚类分析是一种无监督学习的方法,用于将数据集中的样本划分为不同的组(簇),使得同一组中的样本相似度较高,而不同组之间的样本相似度较低。sklearn.cluster提供了多种聚类算法K均值聚类(K-MeansCl
- 《网络安全自学教程》- TCP/IP协议栈的安全问题和解决方案
士别三日wyx
《网络安全自学教程》网络协议安全tcp/ipweb安全网络安全人工智能ai
「作者简介」:冬奥会网络安全中国代表队,CSDNTop100,就职奇安信多年。《网络安全自学教程》TCP/IP协议簇是以TCP协议和IP协议为核心、由多种协议组成的「协议栈」,是一组协议的集合。因为OSI是理想化的七层模型,所以TCP/IP协议簇从「实用性」的角度出发,将OSI七层参考模型简化为四层模型。从上往下依次是应用层、传输层、网络互联层、网络接口层。TCP/IP协议栈起初是为了网络互联互通
- Open3d处理点云数据-改进的欧式聚类分割算法(六)
点云客户
算法聚类机器学习
1.概述1.1传统欧式聚类分割算法欧式聚类算法(EuclideanClustering)是一种将点云数据分割成不同聚类(簇)的算法。它是点云分割中的一种常用方法,旨在将距离比较近的点分为同一簇,从而识别出不同的物体或结构。这个算法主要适用于包含较小噪音和具有一定距离差异的点云数据。基本思想:(1)选择一个种子点(SeedPoint)作为当前簇的起始点。(2)遍历所有未分类的点,计算它们与种子点的距
- Python核心:Django的日志记录全方位解析
百锦再@新空间代码工作室
Django-299pythondjango数据库flaskpip日志
让我们一起走向未来作者简介:全栈领域优质创作者个人主页:百锦再@新空间代码工作室工作室:新空间代码工作室(提供各种软件服务)个人邮箱:[
[email protected]]个人微信:15045666310网站:https://meihua150.cn/座右铭:坚持自己的坚持,不要迷失自己!要快乐目录让我们一起走向未来1.Django日志配置基础2.主要配置项解析3.日志级别4.使用日志记录5.
- 高斯混合模型(GMM)与K均值算法(K-means)算法的异同
路野yue
人工智能机器学习聚类
高斯混合模型(GaussianMixtureModel,GMM)和K均值(K-Means)算法都是常用于聚类分析的无监督学习方法,虽然它们的目标都是将数据分成若干个类别或簇,但在实现方法、假设和适用场景上有所不同。1.模型假设K均值(K-Means):假设每个簇的样本点在簇中心附近呈均匀分布,通常是球形的(即每个簇的数据点彼此之间的距离相对均匀,具有相同的方差)。每个簇通过一个中心点来表示(即质心
- 机器学习_18 K均值聚类知识点总结
数据媛
机器学习均值算法聚类pythonscikit-learnpandasnumpy
K均值聚类(K-meansClustering)是一种经典的无监督学习算法,广泛应用于数据分组、模式识别和降维等领域。它通过将数据划分为K个簇,使得簇内相似度高而簇间相似度低。今天,我们就来深入探讨K均值聚类的原理、实现和应用。一、K均值聚类的基本概念1.1K均值聚类的目标K均值聚类的目标是将数据集划分为K个簇,使得每个簇内的数据点尽可能接近,而不同簇之间的数据点尽可能远离。具体来说,K均值聚类最
- 动量轮动与光大RSRS指标在backtrader的实现
AI量化投资实验室
建立自己的算法交易事业python机器学习numpy
持续行动1期58/100,“AI技术应用于量化投资研究”。前面我们说轮动其实是一种“范式”,天然带着分散、组合的特点。动量也不是一个策略或者某一个因子,而是一簇。比如N天收益率,均线,MACD金叉或者RSRS(光大证券的一个阻力支撑指标),甚至是通道突破(唐奇安通道或者布林带)都是动量的逻辑。动量背后的逻辑是“强者恒强”,“惯性”。其实这是有道理的。价格趋势会保持一定的运动惯性,市场情绪消化需要一
- 机器学习:k均值
golemon.
ML机器学习均值算法人工智能
所有代码和文档均在golitter/Decoding-ML-Top10:使用Python优雅地实现机器学习十大经典算法。(github.com),欢迎查看。在“无监督学习”中,训练样本的标记信息是未知的,目标是通过对无标记训练样本的学习来揭示数据的内在性质及规律,为进一步的数据分析提供基础,较为经典的是聚类。**聚类试图将数据集中的样本划分为若干个通常是不相交的子集,每个子集称为一个“簇”。**聚
- 网络通信(TCP/UDP协议 三次握手四次挥手 )
羊十一
网络
三、TCP协议与UDP协议1、TCP/IP、TCP、UDP是什么TCP/IP协议是一个协议簇,里面包括很多协议的,UDP只是其中的一个,之所以命名为TCP/IP协议,因为TCP、IP协议是两个很重要的协议,就用他两命名了,而TCP和UDP是位于TCP/IP模型中传输层的两个协议,他们代表着TCP/IP模型所具备的两种通信模式。TCP(TransmissionControlProtocol)传输控制
- k均值聚类python实现
小尤笔记
均值算法聚类python开发语言Python基础
K均值聚类(K-MeansClustering)是一种常用的无监督学习算法,用于将数据分成K个簇。以下是一个简单的Python实现K均值聚类的代码讲解,包括数据准备、初始化、迭代更新簇心和分配簇标签等步骤。CSDN大礼包:《2025年最新全套学习资料包》免费分享代码实现importnumpyasnpimportmatplotlib.pyplotasplt#生成示例数据np.random.seed(
- 深入浅出Java Annotation(元注解和自定义注解)
Josh_Persistence
Java Annotation元注解自定义注解
一、基本概述
Annontation是Java5开始引入的新特征。中文名称一般叫注解。它提供了一种安全的类似注释的机制,用来将任何的信息或元数据(metadata)与程序元素(类、方法、成员变量等)进行关联。
更通俗的意思是为程序的元素(类、方法、成员变量)加上更直观更明了的说明,这些说明信息是与程序的业务逻辑无关,并且是供指定的工具或
- mysql优化特定类型的查询
annan211
java工作mysql
本节所介绍的查询优化的技巧都是和特定版本相关的,所以对于未来mysql的版本未必适用。
1 优化count查询
对于count这个函数的网上的大部分资料都是错误的或者是理解的都是一知半解的。在做优化之前我们先来看看
真正的count()函数的作用到底是什么。
count()是一个特殊的函数,有两种非常不同的作用,他可以统计某个列值的数量,也可以统计行数。
在统
- MAC下安装多版本JDK和切换几种方式
棋子chessman
jdk
环境:
MAC AIR,OS X 10.10,64位
历史:
过去 Mac 上的 Java 都是由 Apple 自己提供,只支持到 Java 6,并且OS X 10.7 开始系统并不自带(而是可选安装)(原自带的是1.6)。
后来 Apple 加入 OpenJDK 继续支持 Java 6,而 Java 7 将由 Oracle 负责提供。
在终端中输入jav
- javaScript (1)
Array_06
JavaScriptjava浏览器
JavaScript
1、运算符
运算符就是完成操作的一系列符号,它有七类: 赋值运算符(=,+=,-=,*=,/=,%=,<<=,>>=,|=,&=)、算术运算符(+,-,*,/,++,--,%)、比较运算符(>,<,<=,>=,==,===,!=,!==)、逻辑运算符(||,&&,!)、条件运算(?:)、位
- 国内顶级代码分享网站
袁潇含
javajdkoracle.netPHP
现在国内很多开源网站感觉都是为了利益而做的
当然利益是肯定的,否则谁也不会免费的去做网站
&
- Elasticsearch、MongoDB和Hadoop比较
随意而生
mongodbhadoop搜索引擎
IT界在过去几年中出现了一个有趣的现象。很多新的技术出现并立即拥抱了“大数据”。稍微老一点的技术也会将大数据添进自己的特性,避免落大部队太远,我们看到了不同技术之间的边际的模糊化。假如你有诸如Elasticsearch或者Solr这样的搜索引擎,它们存储着JSON文档,MongoDB存着JSON文档,或者一堆JSON文档存放在一个Hadoop集群的HDFS中。你可以使用这三种配
- mac os 系统科研软件总结
张亚雄
mac os
1.1 Microsoft Office for Mac 2011
大客户版,自行搜索。
1.2 Latex (MacTex):
系统环境:https://tug.org/mactex/
&nb
- Maven实战(四)生命周期
AdyZhang
maven
1. 三套生命周期 Maven拥有三套相互独立的生命周期,它们分别为clean,default和site。 每个生命周期包含一些阶段,这些阶段是有顺序的,并且后面的阶段依赖于前面的阶段,用户和Maven最直接的交互方式就是调用这些生命周期阶段。 以clean生命周期为例,它包含的阶段有pre-clean, clean 和 post
- Linux下Jenkins迁移
aijuans
Jenkins
1. 将Jenkins程序目录copy过去 源程序在/export/data/tomcatRoot/ofctest-jenkins.jd.com下面 tar -cvzf jenkins.tar.gz ofctest-jenkins.jd.com &
- request.getInputStream()只能获取一次的问题
ayaoxinchao
requestInputstream
问题:在使用HTTP协议实现应用间接口通信时,服务端读取客户端请求过来的数据,会用到request.getInputStream(),第一次读取的时候可以读取到数据,但是接下来的读取操作都读取不到数据
原因: 1. 一个InputStream对象在被读取完成后,将无法被再次读取,始终返回-1; 2. InputStream并没有实现reset方法(可以重
- 数据库SQL优化大总结之 百万级数据库优化方案
BigBird2012
SQL优化
网上关于SQL优化的教程很多,但是比较杂乱。近日有空整理了一下,写出来跟大家分享一下,其中有错误和不足的地方,还请大家纠正补充。
这篇文章我花费了大量的时间查找资料、修改、排版,希望大家阅读之后,感觉好的话推荐给更多的人,让更多的人看到、纠正以及补充。
1.对查询进行优化,要尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
2.应尽量避免在 where
- jsonObject的使用
bijian1013
javajson
在项目中难免会用java处理json格式的数据,因此封装了一个JSONUtil工具类。
JSONUtil.java
package com.bijian.json.study;
import java.util.ArrayList;
import java.util.Date;
import java.util.HashMap;
- [Zookeeper学习笔记之六]Zookeeper源代码分析之Zookeeper.WatchRegistration
bit1129
zookeeper
Zookeeper类是Zookeeper提供给用户访问Zookeeper service的主要API,它包含了如下几个内部类
首先分析它的内部类,从WatchRegistration开始,为指定的znode path注册一个Watcher,
/**
* Register a watcher for a particular p
- 【Scala十三】Scala核心七:部分应用函数
bit1129
scala
何为部分应用函数?
Partially applied function: A function that’s used in an expression and that misses some of its arguments.For instance, if function f has type Int => Int => Int, then f and f(1) are p
- Tomcat Error listenerStart 终极大法
ronin47
tomcat
Tomcat报的错太含糊了,什么错都没报出来,只提示了Error listenerStart。为了调试,我们要获得更详细的日志。可以在WEB-INF/classes目录下新建一个文件叫logging.properties,内容如下
Java代码
handlers = org.apache.juli.FileHandler, java.util.logging.ConsoleHa
- 不用加减符号实现加减法
BrokenDreams
实现
今天有群友发了一个问题,要求不用加减符号(包括负号)来实现加减法。
分析一下,先看最简单的情况,假设1+1,按二进制算的话结果是10,可以看到从右往左的第一位变为0,第二位由于进位变为1。
 
- 读《研磨设计模式》-代码笔记-状态模式-State
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
当一个对象的内在状态改变时允许改变其行为,这个对象看起来像是改变了其类
状态模式主要解决的是当控制一个对象状态的条件表达式过于复杂时的情况
把状态的判断逻辑转移到表示不同状态的一系列类中,可以把复杂的判断逻辑简化
如果在
- CUDA程序block和thread超出硬件允许值时的异常
cherishLC
CUDA
调用CUDA的核函数时指定block 和 thread大小,该大小可以是dim3类型的(三维数组),只用一维时可以是usigned int型的。
以下程序验证了当block或thread大小超出硬件允许值时会产生异常!!!GPU根本不会执行运算!!!
所以验证结果的正确性很重要!!!
在VS中创建CUDA项目会有一个模板,里面有更详细的状态验证。
以下程序在K5000GPU上跑的。
- 诡异的超长时间GC问题定位
chenchao051
jvmcmsGChbaseswap
HBase的GC策略采用PawNew+CMS, 这是大众化的配置,ParNew经常会出现停顿时间特别长的情况,有时候甚至长到令人发指的地步,例如请看如下日志:
2012-10-17T05:54:54.293+0800: 739594.224: [GC 739606.508: [ParNew: 996800K->110720K(996800K), 178.8826900 secs] 3700
- maven环境快速搭建
daizj
安装mavne环境配置
一 下载maven
安装maven之前,要先安装jdk及配置JAVA_HOME环境变量。这个安装和配置java环境不用多说。
maven下载地址:http://maven.apache.org/download.html,目前最新的是这个apache-maven-3.2.5-bin.zip,然后解压在任意位置,最好地址中不要带中文字符,这个做java 的都知道,地址中出现中文会出现很多
- PHP网站安全,避免PHP网站受到攻击的方法
dcj3sjt126com
PHP
对于PHP网站安全主要存在这样几种攻击方式:1、命令注入(Command Injection)2、eval注入(Eval Injection)3、客户端脚本攻击(Script Insertion)4、跨网站脚本攻击(Cross Site Scripting, XSS)5、SQL注入攻击(SQL injection)6、跨网站请求伪造攻击(Cross Site Request Forgerie
- yii中给CGridView设置默认的排序根据时间倒序的方法
dcj3sjt126com
GridView
public function searchWithRelated() {
$criteria = new CDbCriteria;
$criteria->together = true; //without th
- Java集合对象和数组对象的转换
dyy_gusi
java集合
在开发中,我们经常需要将集合对象(List,Set)转换为数组对象,或者将数组对象转换为集合对象。Java提供了相互转换的工具,但是我们使用的时候需要注意,不能乱用滥用。
1、数组对象转换为集合对象
最暴力的方式是new一个集合对象,然后遍历数组,依次将数组中的元素放入到新的集合中,但是这样做显然过
- nginx同一主机部署多个应用
geeksun
nginx
近日有一需求,需要在一台主机上用nginx部署2个php应用,分别是wordpress和wiki,探索了半天,终于部署好了,下面把过程记录下来。
1. 在nginx下创建vhosts目录,用以放置vhost文件。
mkdir vhosts
2. 修改nginx.conf的配置, 在http节点增加下面内容设置,用来包含vhosts里的配置文件
#
- ubuntu添加admin权限的用户账号
hongtoushizi
ubuntuuseradd
ubuntu创建账号的方式通常用到两种:useradd 和adduser . 本人尝试了useradd方法,步骤如下:
1:useradd
使用useradd时,如果后面不加任何参数的话,如:sudo useradd sysadm 创建出来的用户将是默认的三无用户:无home directory ,无密码,无系统shell。
顾应该如下操作:
- 第五章 常用Lua开发库2-JSON库、编码转换、字符串处理
jinnianshilongnian
nginxlua
JSON库
在进行数据传输时JSON格式目前应用广泛,因此从Lua对象与JSON字符串之间相互转换是一个非常常见的功能;目前Lua也有几个JSON库,本人用过cjson、dkjson。其中cjson的语法严格(比如unicode \u0020\u7eaf),要求符合规范否则会解析失败(如\u002),而dkjson相对宽松,当然也可以通过修改cjson的源码来完成
- Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
yaerfeng1989
timerquartz定时器
原创整理不易,转载请注明出处:Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
代码下载地址:http://www.zuidaima.com/share/1772648445103104.htm
有两种流行Spring定时器配置:Java的Timer类和OpenSymphony的Quartz。
1.Java Timer定时
首先继承jav
- Linux下df与du两个命令的差别?
pda158
linux
一、df显示文件系统的使用情况,与du比較,就是更全盘化。 最经常使用的就是 df -T,显示文件系统的使用情况并显示文件系统的类型。 举比例如以下: [root@localhost ~]# df -T Filesystem Type &n
- [转]SQLite的工具类 ---- 通过反射把Cursor封装到VO对象
ctfzh
VOandroidsqlite反射Cursor
在写DAO层时,觉得从Cursor里一个一个的取出字段值再装到VO(值对象)里太麻烦了,就写了一个工具类,用到了反射,可以把查询记录的值装到对应的VO里,也可以生成该VO的List。
使用时需要注意:
考虑到Android的性能问题,VO没有使用Setter和Getter,而是直接用public的属性。
表中的字段名需要和VO的属性名一样,要是不一样就得在查询的SQL中
- 该学习笔记用到的Employee表
vipbooks
oraclesql工作
这是我在学习Oracle是用到的Employee表,在该笔记中用到的就是这张表,大家可以用它来学习和练习。
drop table Employee;
-- 员工信息表
create table Employee(
-- 员工编号
EmpNo number(3) primary key,
-- 姓