- 决策树算法全解析:从零基础到Titanic实战,一文搞定机器学习经典模型
吴师兄大模型
0基础实现机器学习入门到精通算法机器学习决策树人工智能深度学习编程开发语言
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- Ai时代初期全球不同纬度的层级辐射现象
龙胥伯
人工智能
基于最新研究成果与行业动态,AI时代的"层级辐射"现象可被科学解构为以下六大维度,结合技术演进、产业实践和社会影响进行系统性分析:一、技术能力的层级跃迁模型效率革命DeepSeek研发的R1-Zero模型通过动态架构设计,将样本利用率提升40%以上,训练周期大幅缩短。这种技术突破推动AI从实验室走向规模化应用,在智能制造、生物医药等领域催生新生态。大语言模型的训练方式(预训练→多任务学习→强化学习
- Redis客户端jedis与lettuce的区别
风雨无阻1203
RedisJava研发文档redis缓存LettuceJedis
什么是Lettuce与JedisLettuce是一个高级Redis客户端,用于线程安全的同步、异步和反应式访问。它支持高级的Redis特性,如Sentinel、集群、流水线、自动重新连接和redis数据模型等。Lettuce是完全非阻塞的,基于Netty事件驱动的通信层,其方法将返回具有可观察的类型,可在流或异步编程环境中使用。Jedis是基于Java语言的Redis的客户端,Jedis=Java
- 基于Docker 搭建Redis三主三从分布式集群
DBA学习之路
dockerredis容器
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、分布式系统规划二、准备配置文件1.创建redis集群目录三、启动Redis容器四、创建分布式系统1.创建集群2.查看节点信息总结前言提示:这里可以添加本文要记录的大概内容:本次搭建的为”三主三从“的分布式系统,分布式系统中节点存放的数据可以是不同的。当有数据写入请求到达分布式系统后,系统会采用虚拟槽分区算法将数据写入相
- 自定义Retriever的实现方法
vaidfl
windowslinuxmicrosoftpython
技术背景介绍在许多大语言模型(LLM)应用中,检索器(Retriever)用于从外部数据源获取信息。检索器的任务是根据用户查询检索相关的文档,这些文档通常被格式化为提示,供LLM使用,从而生成适当的响应,例如,根据知识库回答用户问题。核心原理解析要实现自定义的检索器,需要继承BaseRetriever类,并实现以下方法:_get_relevant_documents:获取与查询相关的文档,必需实现
- 如何缓存聊天模型响应以提高效率
scaFHIO
缓存javaoraclepython
技术背景介绍在开发基于大型语言模型(LLM)的应用程序时,API调用的成本和响应速度是需要考虑的两个重要因素。尤其是在开发过程中,重复请求相同的文本生成可能会增加额外的成本和延迟。为了应对这一挑战,LangChain提供了一种可选的缓存机制,可以有效地减少API调用次数,从而节省费用并加速应用程序响应。核心原理解析缓存机制的基本原理是在第一次请求时,将响应存储在缓存中。如果以后再次请求相同的输入,
- 如何在一行代码中初始化各种AI模型
qahaj
人工智能python深度学习
技术背景介绍在开发大语言模型(LLM)应用时,用户有时需要选择不同的模型提供商和具体模型。这通常需要一定的逻辑来根据用户配置初始化不同的聊天模型。为了简化这一过程,init_chat_model()方法被引入,让开发者能够轻松地初始化多种模型集成,而无需担心导入路径和类名。核心原理解析init_chat_model()方法通过传入模型名称及其提供商,自动推断并实例化对应的聊天模型。该功能在lang
- TikTokenizer 开源项目教程
邱纳巧Gillian
TikTokenizer开源项目教程tiktokenizerOnlineplaygroundforOpenAPItokenizers项目地址:https://gitcode.com/gh_mirrors/ti/tiktokenizer项目介绍TikTokenizer是一个基于Python的开源项目,旨在提供一个高效、灵活的文本分词工具。该项目利用先进的算法和数据结构,能够快速准确地对文本进行分词处
- 使用Tiktoken进行文本分割:优化大语言模型的输入
bhawfgrcbtwny
语言模型python人工智能
引言在处理大语言模型时,因其对输入的token数量有限制,文本分割成为一个至关重要的任务。为了确保生成的文本块不会超过模型的token限制,我们需要使用与模型相同的tokenizer来计数和分割文本。在本文中,我们将探讨如何使用Tiktoken和其他工具来实现有效的文本分割。主要内容1.Tiktoken介绍Tiktoken是由OpenAI创建的一个快速BPE(BytePairEncoding)to
- 大模型应用编排工具Dify二开之登录Token改造
Daphnis_z
Python开发LLMchatgptpythondockerweb
1.前言dify工作室支持在画布上直接编辑业务流程,通过调用开源大模型可以实现特定场景的业务,而且可以迅速更新发布。因此,某些项目要求在产品里面能够直接编辑dify业务流程,使得现场开发人员能够迅速响应客户需求。另外,方便对dify进行运维,比如更新开源大模型认证信息。环境信息:dify-0.8.3,docker-212.实现思路分析常规的思路有两种:把dify源码迁移到产品中代码改造量大、难度高
- LuaJIT 学习(5)—— string.buffer 库
alenliu0621
LuaLuaJIT
文章目录UsingtheStringBufferLibraryBufferObjectsBufferMethodOverviewBufferCreationandManagement`localbuf=buffer.new([size[,options]])localbuf=buffer.new([options])``buf=buf:reset()``buf=buf:free()`BufferW
- 图论并查集小结
_C9
并查集
这周学习了并查集的有关内容,简单说一下并查集并查集主要用于处理一些不相交集合的合并问题。。使用并查集时,第一步会存在一组不相交的动态集合,一般都会使用一个整数表示集合中的一个元素。每个集合可能包含一个或多个元素,并选出集合中的某个元素作为代表。每个集合中具体包含了哪些元素是不关心的,具体选择哪个元素作为代表一般也是不关心的。我们关心的是,对于给定的元素,可以很快的找到这个元素所在的集合(的代表),
- 2024年六大勒索攻击事件大盘点,“反勒索”思维助企业提前破局
科技云报道
反勒索
超20亿美元,这是2024年一场勒索攻击企业带来的直接经济损失。然而,这场攻击的“代价”远不止于此。这是真实发生在美国的事件。据安全内参消息,去年2月,美国医疗IT公司ChangeHealthcare遭受了勒索攻击,导致数字服务中断整整9个月,直至2024年12月,仍然有少量业务功能未恢复。作为美国最大的医疗支付处理公司之一,ChangeHealthcare每年处理约150亿笔交易,此次攻击不仅对
- AI人工智能代理工作流AI Agent WorkFlow:设计智能任务处理流程
AI天才研究院
计算AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AI人工智能代理工作流AIAgentWorkFlow:设计智能任务处理流程作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来在当今的数字化时代,随着数据量的爆炸式增长和复杂性的提升,传统的手动任务处理方式已经无法满足高效、准确的需求。人工智能技术的发展为自动化任务处理提供了新的可能性。AI人工智能代理(AIAgent)作为一
- 98-二叉树-验证二叉搜索树
Hello_Git
javascript
树|深度优先搜索|二叉搜索树|二叉树一、二叉搜索树(BST)的性质首先,了解二叉搜索树(BinarySearchTree,BST)的定义和性质是解决这类问题的基础。BST的定义左子树:节点的左子树只包含小于当前节点的数。右子树:节点的右子树只包含大于当前节点的数。递归性质:左子树和右子树本身也必须是二叉搜索树。简单来说,BST具有以下特点:中序遍历BST可以得到一个递增的有序序列。每个节点的值都大
- 洛谷P2678[NOIP2015]跳石头(二分算法)
猪猪成
C++笔记洛谷算法c++
题目:AC通过图如下简短的AC代码如下:#include#includeusingnamespacestd;intmain(){intl,n,m;cin>>l>>n>>m;intarr[50001];intnow,left,right,mid;left=0;right=l;//给2位置变量初始化数值;for(inti=1;i>arr[i];}arr[0]=0;intsum;//记录搬走的石块总和;
- 宇树科技纯技能要求总结
极梦网络无忧
杂谈科技
一、嵌入式开发与硬件设计核心技能嵌入式开发:精通C/C++,熟悉STM32、ARM开发熟悉LinuxBSP开发及驱动框架(SPI/UART/USB/FLASH/Camera/GPS/LCD)掌握主流平台(英伟达、全志、瑞芯微等)硬件设计:精通数字/模拟电路设计,熟悉PCB绘制工具(Altium等)掌握MOS驱动电路、变压器设计及EMC优化熟悉制板/贴片流程及焊接扩展技能电机控制:熟悉有感FOC算法
- 【图论】并查集的学习和使用
猪猪成
C++学习算法图论
目录并查集是什么?举个例子组成父亲数组:find函数:union函数:代码实现:fa[]初始化code:findcode:递归实现:非递归实现:unioncode:画图模拟:路径压缩:路径压缩Code:并查集是什么?是一种树形的数据结构,一般用来处理集合的合并,查询操作。举个例子告诉你1的父节点是22的父节点是34的父节点是56没有父节点那么可以画出三个集合,或者说是树。然后我们一般用并查集判断:
- 施磊老师c++笔记(三)
Zhuai-行淮
施磊老师cppc++笔记
c++模板编程-学习cpp类库的编程基础文章目录c++模板编程-学习cpp类库的编程基础1.函数模板2.理解模板函数3.实现cpp的vector向量容器4.理解容器空间配置器allocator的重要性1.函数模板内容:模板的实例化,模板函数,模板类型参数,模板非类型参数,模板的实参推演,模板的特例化,模板函数模板的特例化非模板函数的重载关系区分函数模板和模板函数的概念!!!模板的意义?对类型也可以
- 初识金融行业
Alessio Micheli
金融职场和发展
金融行业确实是一个竞争激烈、压力巨大的领域,尤其是对于从业人员来说,考核压力、业绩目标、职场竞争等问题常常让人感到疲惫和焦虑。以下是一些建议,帮助你在这样的环境中更好地应对挑战:1.调整心态,接受现实金融行业的竞争是常态,业绩波动也是不可避免的。接受这一点,可以减少不必要的心理负担。设定合理的目标,不要过于苛求自己,避免陷入“完美主义”的陷阱。2.提升核心竞争力不断学习和提升专业技能,保持对市场的
- 链表操作:分区与回文判断
共享家9527
数据结构数据结构c语言开发语言leetcode链表
目录链表分区(Partition)功能概述代码实现要点与难点注意事项链表回文判断(PalindromeList)功能概述代码实现要点与难点注意事项总结在链表相关的算法问题中,理解链表的基本结构和操作至关重要。今天我们深入探讨两个经典的链表问题:链表分区和链表回文判断,通过详细分析代码实现,理解其中的要点、难点和注意事项。作者主页:共享家9527-CSDN博客链表分区(Partition)功能概述链
- 文本纠错(Text Correction)
dundunmm
人工智能数据挖掘文本纠错人工智能数据挖掘文本纠错深度学习
文本纠错(TextCorrection)是自然语言处理(NLP)中的一个重要任务,旨在自动检测并修正文本中的错误,包括拼写、语法、语义等层面的错误。其核心目标是通过算法模型将错误文本转换为符合语言规范的表达。该任务在自动写作辅助、搜索引擎优化、智能客服、教育等多个领域具有广泛应用。输入:包含错误的原始文本(如“我明天要去北京,希望天汽好。”)输出:修正后的规范文本(如“我明天要去北京,希望天气好。
- 使用CharacterTextSplitter实现文本按字符拆分
bavDHAUO
python
在文本处理任务中,按字符进行拆分是一种简单且有效的方法。本篇文章将介绍如何使用CharacterTextSplitter类对文本进行按字符拆分,并生成适用于下游任务的LangChainDocument对象。技术背景介绍文本拆分是自然语言处理(NLP)中的一个基础步骤,尤其在大文本分块处理、文本摘要等任务中。CharacterTextSplitter是langchain-text-splitters
- 【面试问题】Java 接口与抽象类的区别
刘小炮吖i
JavaJava后端开发面试题java开发语言面试
引言在Java面向对象编程中,接口(Interface)和抽象类(AbstractClass)是两个重要的抽象工具。它们都能定义未实现的方法,但设计目标和使用场景截然不同。本文将通过语法、特性和实际案例,深入解析两者的核心区别。一、基础概念回顾抽象类(AbstractClass)定义:使用abstract关键字声明的类,包含抽象方法(无实现)和具体方法(有实现)。特点:不能被实例化,必须通过子类继
- 图像处理篇---图像预处理
Ronin-Lotus
图像处理篇深度学习篇程序代码篇图像处理人工智能opencvpython深度学习计算机视觉
文章目录前言一、通用目的1.1数据标准化目的实现1.2噪声抑制目的实现高斯滤波中值滤波双边滤波1.3尺寸统一化目的实现1.4数据增强目的实现1.5特征增强目的实现:边缘检测直方图均衡化锐化二、分领域预处理2.1传统机器学习(如SVM、随机森林)2.1.1特点2.1.2预处理重点灰度化二值化形态学操作特征工程2.2深度学习(如CNN、Transformer)2.2.1特点2.2.2预处理重点通道顺序
- 施磊老师高级c++(一)
Zhuai-行淮
施磊老师cppc++开发语言
对象被优化后,才是高效的c++编程文章目录对象被优化后,才是高效的c++编程1.对象使用背后调用了哪些方法2.函数调用过程中对象背后调用方法3.总结三条对象优化的规则4.CMyString的代码问题5.添加带右值引用参数的拷贝构造和赋值函数6.String类在vector上的应用--面试题7.move移动语义和forword类型完美转发move移动语义的作用代码:**问题:**解决办法:最终代码:
- 目前市场上主流的机器视觉的框架有哪些?他们的特点及优劣
yuanpan
机器学习计算机视觉
目前市场上主流的机器视觉框架和工具可以分为商业软件、开源工具和深度学习框架三大类。以下是它们的总结及特点对比:1.商业软件(1)Halcon(MVTec)特点:专注于工业机器视觉,提供高精度、高效率的算法。支持复杂的工业应用,如缺陷检测、3D视觉、深度学习等。提供图形化开发工具HDevelop和多种编程接口。优势:算法优化好,适合实时工业应用。硬件兼容性强,支持多种工业相机和设备。劣势:商业软件,
- Transformers模型版本和lm_eval老版本冲突问题ImportError: cannot import name ‘initialize_tasks‘ from ‘lm_eval.task
neverwin6
llamapython服务器
Transformers模型版本和lm_eval老版本冲突问题1问题背景在LLM评测的时候,要用lm_eval模型,而对于像是llama3/Mistrual等比较新的模型,较低的Transformers不能适配,所以要升级到0.40.0以上才行,但是如果升级的话,那么直接在沿用老版本的lm_eval评测就会出现:Traceback(mostrecentcalllast):File"main.py"
- Tree of Thought Prompting(思维树提示)
大数据追光猿
大模型人工智能大数据深度学习语言模型计算机视觉
TreeofThoughtPrompting(思维树提示)是一种新兴的提示工程技术,旨在通过模拟人类解决问题时的多步推理过程,提升大型语言模型(LLM)在复杂任务中的表现。与传统的线性提示方法不同,思维树提示将问题分解为多个可能的推理路径,并以树状结构探索这些路径,从而找到最优解或生成更高质量的结果。这种方法特别适用于需要多步推理的任务,例如数学问题求解、逻辑推理、规划和创造性写作等场景。它结合了
- 95% 向量资源节省,火山引擎云搜索 RAG 技术体系演进
字节跳动云原生计算
火山引擎搜索引擎算法
采访嘉宾|火山引擎云搜索团队鲁蕴铖、李杰辉、余炜强编辑|TinaInfoQ2023年,大模型惊艳了世界。2024年,RAG技术如日中天。RAG使得大模型能够在不更新模型参数的情况下,获得必要的上下文信息,从而减少大模型的幻觉。随着大型语言模型技术的不断成熟和行业应用的深入,人们对RAG系统的期望已经超越了对其“酷炫”效果的追求。企业和组织开始寻找更可靠、可扩展的RAG解决方案,以满足实际业务需求。
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比