ONNXRuntime与CUDA版本对应

        onnxruntime-gpu版本可以说是一个非常简单易用的框架,因为通常用pytorch训练的模型,在部署时,会首先转换成onnx,而onnxruntime和onnx又是有着同一个爸爸,无疑,在op的支持上肯定是最好的。

        通常在安装onnxruntime时,需要将其版本与pytorch版本和CUDA版本进行对应,其中ONNXRuntime与CUDA版本对应关系表如下表所示。

ONNX Runtime CUDA cuDNN Notes
1.17 12.2 8.9.2.26 (Linux)
8.9.2.26 (Windows)
The default CUDA version for ORT 1.17 is CUDA 11.8. To install CUDA 12 package, please look at Install ORT.
Due to low demand on Java GPU package, only C++/C# Nuget and Python packages are released with CUDA 12.2
1.15
1.16
1.17
11.8 8.2.4 (Linux)
8.5.0.96 (Windows)
Tested with CUDA versions from 11.6 up to 11.8, and cuDNN from 8.2.4 up to 8.9.0
1.14
1.13.1
1.13
11.6 8.2.4 (Linux)
8.5.0.96 (Windows)
libcudart 11.4.43
libcufft 10.5.2.100
libcurand 10.2.5.120
libcublasLt 11.6.5.2
libcublas 11.6.5.2
libcudnn 8.2.4
1.12
1.11
11.4 8.2.4 (Linux)
8.2.2.26 (Windows)
libcudart 11.4.43
libcufft 10.5.2.100
libcurand 10.2.5.120
libcublasLt 11.6.5.2
libcublas 11.6.5.2
libcudnn 8.2.4
1.10 11.4 8.2.4 (Linux)
8.2.2.26 (Windows)
libcudart 11.4.43
libcufft 10.5.2.100
libcurand 10.2.5.120
libcublasLt 11.6.1.51
libcublas 11.6.1.51
libcudnn 8.2.4
1.9 11.4 8.2.4 (Linux)
8.2.2.26 (Windows)
libcudart 11.4.43
libcufft 10.5.2.100
libcurand 10.2.5.120
libcublasLt 11.6.1.51
libcublas 11.6.1.51
libcudnn 8.2.4
1.8 11.0.3 8.0.4 (Linux)
8.0.2.39 (Windows)
libcudart 11.0.221
libcufft 10.2.1.245
libcurand 10.2.1.245
libcublasLt 11.2.0.252
libcublas 11.2.0.252
libcudnn 8.0.4
1.7 11.0.3 8.0.4 (Linux)
8.0.2.39 (Windows)
libcudart 11.0.221
libcufft 10.2.1.245
libcurand 10.2.1.245
libcublasLt 11.2.0.252
libcublas 11.2.0.252
libcudnn 8.0.4
1.5-1.6 10.2 8.0.3 CUDA 11 can be built from source
1.2-1.4 10.1 7.6.5 Requires cublas10-10.2.1.243; cublas 10.1.x will not work
1.0-1.1 10.0 7.6.4 CUDA versions from 9.1 up to 10.1, and cuDNN versions from 7.1 up to 7.4 should also work with Visual Studio 2017

        选好版本后,使用以下命令进行安装onnxruntime


pip install onnxruntime-gpu==X.X.X -i https://pypi.tuna.tsinghua.edu.cn/simple

 X.X.X表示版本号。

你可能感兴趣的:(部署,YOLO,onnxruntime,onnX,部署,cuda,python)