- SpringBoot中运行Yolov5程序
eqa11
springbootYOLO后端
文章目录SpringBoot中运行Yolov5程序一、引言二、环境搭建1、SpringBoot项目创建2、YOLOv5环境配置三、SpringBoot与YOLOv5集成1、创建Python服务2、SpringBoot调用Python服务四、使用示例1、创建控制器五、总结SpringBoot中运行Yolov5程序一、引言在人工智能领域,目标检测是一个热门且实用的技术。YOLOv5作为目标检测算法中的
- 阿里巴巴Qwen团队发布AI模型,可操控PC和手机
新加坡内哥谈技术
人工智能深度学习语言模型学习
每周跟踪AI热点新闻动向和震撼发展想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行!订阅:https://rengongzhineng.io/这周,科技界的目光几乎都被DeepSeek的R1模型吸引,但阿里巴巴并没有袖手旁观。1月
- 对比DeepSeek、ChatGPT和Kimi的学术写作摘要能力
AIWritePaper官方账号
DeepSeekAIWritePaperChatGPT人工智能chatgptllama数据分析论文阅读
摘要摘要是文章的精华,通常在200-250词左右。要包括研究的目的、方法、结果和结论。让AI工具作为某领域内资深的研究专家,编写摘要需要言简意赅,直接概括论文的核心,为读者提供快速了解的窗口。下面我们使用DeepSeek、ChatGPT4以及Kimi辅助编写摘要。提示词:你现在是一名[计算机理论专家],研究方向集中在[人工智能、大模型、数据挖掘等计算机相关方向]。我现在需要撰写一篇围绕[人工智能在
- 计算机视觉:解锁未来智能的钥匙及其代码实践
我的运维人生
计算机视觉人工智能运维开发技术共享
计算机视觉:解锁未来智能的钥匙及其代码实践在当今这个数据爆炸的时代,计算机视觉作为人工智能的一个重要分支,正以前所未有的速度推动着科技的边界。它不仅让机器“看懂”世界,更在自动驾驶、医疗影像分析、智能制造、安防监控等众多领域展现出巨大的应用潜力。本文将深入探讨计算机视觉的核心技术、最新进展,并通过一个具体的代码案例,展示如何在实践中应用这些技术,旨在为读者提供一个理论与实践相结合的全面视角。一、计
- ImportError: DLL load failed while importing _rust: 找不到指定的程序的解决方案
爱编程的喵喵
Python基础课程pythonImportErrorDLLloadfailed_rust解决方案
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理解,而且能够帮助新手快速入门。 本文主要介绍了ImportError:DLLloa
- 《向量数据库指南》——MoE应用:解锁深度学习新境界的钥匙
大禹智库
《实战AI智能体》《向量数据库指南》深度学习人工智能向量数据库大禹智库低代码MoE模型
在深度学习的广阔天地里,混合专家(MoE)模型如同一把锐利的钥匙,正逐步解锁着各种复杂应用场景的新境界。作为大禹智库的向量数据库高级研究员,同时也是《向量数据库指南》的作者,我深感MoE模型在推动AI技术向前发展中所扮演的重要角色。今天,我将带大家深入探讨MoE模型在自然语言处理、计算机视觉以及多模态学习等领域的应用,并巧妙引导大家通过《向量数据库指南》获取更多干货和深度实战经验。一、自然语言处理
- 小南每日 AI 资讯 | 国产AI之光DeepSeek暴击硅谷??? | 25/01/29
小南AI学院
人工智能
1.中国AI模型震惊硅谷:DeepSeek为何一夜火出圈?国产AI大模型DeepSeek迅速崛起,引发硅谷关注。2.中国银行支持AI产业:1万亿元金融扶持助推智能化升级中国银行宣布提供1万亿元资金支持人工智能产业链发展,助力智能化升级。3.国产AI大模型DeepSeek惊艳全球:游戏科学冯骥称其为“国运级别科技成果”DeepSeek的AI模型引起全球关注,游戏科学的冯骥高度评价其意义。4.AI产业
- 【我的阅读】【nature |ai4science】Scientific discovery in the age of artificial intelligence【人工智能时代的科学发现】
算法研究员
【AI4Science】人工智能
相关资料:https://www.nature.com/articles/s41586-023-06221-2#Sec15文章目录Abstract摘要Conclusion结论Abstract摘要Artificialintelligence(AI)isbeingincreasinglyintegratedintoscientificdiscoverytoaugmentandaccelerateres
- Hugging Face挑战DeepSeek,AI开源竞赛升级!
新加坡内哥谈技术
人工智能深度学习语言模型学习
每周跟踪AI热点新闻动向和震撼发展想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行!订阅:https://rengongzhineng.io/DeepSeek的R1推理模型刚刚引发全球轰动,开源AI界的“顶流”HuggingFac
- LLM based Single Agent System
AGI大模型与大数据研究院
大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
LLM-BasedSingleAgentSystem:ANewEraofIntelligentAutomation关键词:大语言模型,单智能体系统,强化学习,自然语言处理,智能自动化1.背景介绍近年来,随着深度学习技术的快速发展,大语言模型(LLM)在自然语言处理(NLP)领域取得了突破性进展。LLM凭借其强大的语言理解和生成能力,正在改变着人们与信息交互的方式。同时,人工智能领域的另一个重要研究
- DeepSeek:硅谷AI格局的拐点?
新加坡内哥谈技术
人工智能深度学习语言模型学习
每周跟踪AI热点新闻动向和震撼发展想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行!订阅:https://rengongzhineng.io/本周,硅谷迎来了一个令人大跌眼镜的现实:打造先进人工智能模型,可能远没有想象中那么高深莫
- YOLO 目标检测编程详解
不知名靓仔
YOLO目标检测人工智能
引言目标检测是计算机视觉中的一个重要任务,它旨在识别图像中的对象并定位这些对象的位置。YOLO(YouOnlyLookOnce)是一种流行的目标检测算法,因其速度快且准确度高而广受好评。本文将深入探讨YOLO的原理及其实现方法,并提供一个使用Python和PyTorch的示例代码。项目源码见最下方1.YOLO算法简介YOLO算法的核心思想是将目标检测视为回归问题,而不是传统的分类加定位的两阶段方法
- AI常见的算法
纠结哥_Shrek
人工智能算法
人工智能(AI)中常见的算法分为多个领域,如机器学习、深度学习、强化学习、自然语言处理和计算机视觉等。以下是一些常见的算法及其用途:1.机器学习(MachineLearning)监督学习(SupervisedLearning)线性回归(LinearRegression):用于预测连续值,如房价预测。逻辑回归(LogisticRegression):用于分类问题,如垃圾邮件检测。支持向量机(SVM)
- 【Python进阶】5招轻松掌握Python计算机视觉,你还用传统方法吗?
墨瑾轩
Python入门~精通python计算机视觉开发语言
关注墨瑾轩,带你探索编程的奥秘!超萌技术攻略,轻松晋级编程高手技术宝库已备好,就等你来挖掘订阅墨瑾轩,智趣学习不孤单即刻启航,编程之旅更有趣5招轻松掌握Python计算机视觉,你还用传统方法吗?开场白嘿,小伙伴们!今天我们要聊一个非常酷炫的话题——如何使用Python进行计算机视觉。想象一下,当你手头上有一组图像数据,需要对其进行识别、检测或分割,你会怎么做?手动编程?Nonono,那太累了!今天
- 两个免费的英文论文润色网站
知足常乐2023
论文润色笔记
1.DeepL:常用,感觉比较好用,可选择多种润色模式,但润色的字数有限制。DeepLWrite:人工智能驱动的写作助手https://www.deepl.com/write2.赛特新思:用的较少,润色字数也有限制。SCI润色|文献润色|英文润色|Editing|英文写作|论文写作|citexs斯特新思https://www.citexs.com/Editing
- python中cv是什么_python里面cv是什么意思
weixin_39639568
python中cv是什么
OpenCV(OpenSourceComputerVisionLibrary)开放源代码计算机视觉库,主要算法涉及图像处理、计算机视觉和机器学习相关方法。OpenCV其实就是一堆C和C++语言的源代码文件,这些源代码文件中实现了许多常用的计算机视觉算法。OpenCV由一系列C函数和C++类构成,它有C,C++,Python和java接口,当前SDK(SoftwareDevelopmentKit软件
- cv2 要下载哪个包
ivanfor666
pythonpython
cv2是OpenCV库的一个常见别名,用于计算机视觉任务。要安装OpenCV,你可以使用以下命令:bashCopycodepipinstallopencv-python这将从PyPI上下载并安装OpenCV的Python包。请确保你已经安装了pip工具,并且在执行该命令时,你正在使用与你的项目相对应的Python版本。如果你需要安装OpenCV的额外模块,你可以通过类似的方式安装它们。例如,如果你
- 实时美颜与滤镜技术的融合:美颜SDK开发详解
美狐美颜sdk
美颜SDK直播美颜SDK第三方美颜SDK人工智能计算机视觉视频美颜SDK深度学习美颜SDK直播美颜sdk
如今,实时美颜与滤镜技术逐渐成为影像处理领域的热点。为了满足用户对个性化和高质量视觉效果的需求,各类美颜SDK(SoftwareDevelopmentKit,软件开发工具包)应运而生。本篇文章,笔者将详细解析实时美颜与滤镜技术的原理、关键技术以及美颜SDK的开发要点。一、实时美颜与滤镜技术概述实时美颜主要通过图像处理和计算机视觉技术,在不影响拍摄流畅度的前提下,对人脸进行美化处理。滤镜技术则侧重于
- Python编程入门指南:从基础到高级
编程咕咕gu-
python零基础学习开发语言学习零基础入门
如果你正在学习Python,那么你需要的话可以,点击这里Python重磅福利:入门&进阶全套学习资料、电子书、软件包、项目源码等等免费分享!一、引言1.1Python编程语言简介Python是一种高级编程语言,它具有简单易学、代码简洁、易维护等特点,因此被广泛应用于科学计算、数据分析、人工智能等领域。Python的语法简洁,代码易于阅读和编写,因此它被广大开发者所喜爱。同时,Python还拥有庞大
- 机器学习Day01
酒脑猫
机器学习人工智能
人工智能三大概念及其关系人工智能(AI):使用计算机来模拟或者代替人类机器学习(ML):机器自动学习,并不只由人定义规则编程深度学习(DL):大脑仿生,模拟人大脑神经网络,设计一层层神经元模拟事物机器学习是实现人工智能的一种途径,深度学习是机器学习的一种更加深入的方法。机器学习学习方法基于规则的学习:程序员根据自己经验定义规则基于模型的学习:由于某些事物,问题无法可以定义明确的规则,如:图片,语音
- 2024年AIGC技术未来发展趋势与挑战:从应用创新到伦理监管
小宝哥Code
ChatGPT与AIGCAIGC
生成式人工智能(AIGC,ArtificialIntelligenceGeneratedContent)作为人工智能领域的一个重要分支,正在快速发展并改变着多个行业的格局。2024年,AIGC技术持续取得突破,并进入更多实际应用场景。本文将详细介绍AIGC的基本概念、原理、最新前沿技术及发展趋势。1.生成式人工智能(AIGC)基本概念与原理生成式人工智能(AIGC)是指通过人工智能技术,尤其是深度
- AI 集群:Exo 项目详解
ivwdcwso
运维人工智能AIExo
引言随着人工智能技术的迅猛发展,越来越多的人希望在家中运行自己的AI集群。传统的AI集群通常需要昂贵的硬件和复杂的配置,但Exo项目正是为了解决这个问题而诞生的。Exo项目旨在让你利用日常电子设备,轻松搭建一个高效的AI集群。本文将详细介绍Exo项目的特点、安装步骤和实战示例。©ivwdcwso(ID:u012172506)Exo项目特点1.广泛的模型支持Exo支持多种流行的AI模型,包括但不限于
- python 监控键盘输入_python 监控键盘输入
weixin_39717121
python监控键盘输入
软件测试精品文章汇总测试基础python测试开发库及项目谷歌如何测试软件python工具书籍下载-持续更新2018软件测试标准汇总下载python测试开发自学每周一练python测试工具开发自学每周一练-2018-06软件测试工具书籍与面试题汇总下载(持续更新)python测试开发自动化测试数据分析...文章python人工智能命理2019-05-131907浏览量Shell历史记录异地留痕审计与
- 【计算机视觉】目标跟踪应用
油泼辣子多加
计算机视觉计算机视觉目标跟踪人工智能
一、简介目标跟踪是指根据目标物体在视频当前帧图像中的位置,估计其在下一帧图像中的位置。视频帧由t到t+1的检测,虽然也可以使用目标检测获取,但实际应用中往往是不可行的,原因如下:目标跟踪的目的是根据目标在当前视频帧图像中的位置,预测其在下一帧图像中的位置。然而,使用目标检测直接获取目标位置的方式在实际应用中存在一些限制,主要原因如下:1.实时性问题频繁检测开销大:目标检测通常需要对每一帧的整个图像
- 进阶之路:从传统编程到AI大模型与Prompt驱动的爬虫技术
大模型老炮
人工智能prompt爬虫语言模型大模型学习AI大模型
前言爬虫相信很多人都对此有所了解,它主要依靠编写代码实现对网页结构的解析,通过模拟浏览器行为获取目标数据!随着人工智能技术的发展,LLM大模型的出现为爬虫技术带来了新的思路。与传统的编程模式不同,使用AI大模型+prompt可以显著提高程序员的编程效率。通过结合人工智能和自然语言处理技术,开发者可以更加高效地编写爬虫代码,并实现对网页内容的智能解析和提取。前置内容下面我将通过爬取豆瓣电影top25
- 开源模型应用落地-qwen模型小试-Qwen2.5-7B-Instruct-LangGraph-链式处理(一)
开源技术探险家
开源模型-实际应用落地#深度学习自然语言处理语言模型langchain
一、前言在当今人工智能快速发展的时代,大语言模型不断迭代升级,为各种复杂任务的处理提供了强大的支持。LangGraph作为一种创新的架构,其链式处理机制为充分发挥LLMs的潜力提供了新的途径。Qwen2.5模型是一款备受瞩目的大语言模型,它具备出色的语言理解和生成能力,在广泛的自然语言处理任务中都展现出了卓越的性能。其在语言的准确性、逻辑性以及对复杂语义的把握上都有着突出的表现,为基于它进行的各类
- 一文搞懂python的face_recognition人脸识别库
码上飞扬
python开发语言人脸识别
随着人工智能和机器学习的快速发展,人脸识别技术在安全监控、身份验证、智能相册等领域的应用越来越广泛。Python作为一门简洁高效的编程语言,其丰富的库支持使得人脸识别的实现变得更加容易。本文将介绍如何使用Python的face_recognition库来实现基本的人脸识别功能。一、face_recognition库简介1.1什么是face_recognition库?face_recognition
- AIGC常见基础概念
GISer_Jinger
人工智能AIGC机器学习ai
AIGC(AIGeneratedContent,人工智能生成内容)是近年来快速发展的领域,涉及文本生成、图像生成、音频生成、视频生成等。以下是AIGC常见的面试题目及其详解:1.AIGC基础概念什么是AIGC?它的主要应用场景有哪些?定义:AIGC是指利用人工智能技术自动生成内容,包括文本、图像、音频、视频等。应用场景:文本生成:新闻写作、广告文案、代码生成(如GitHubCopilot)。图像生
- AI时代的人类增强:道德考虑与身体增强的未来发展策略分析预测
AI大模型应用之禅
AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
人类增强、AI、道德、身体增强、未来发展策略、预测1.背景介绍人类文明自诞生以来,就一直在探索如何超越自身的局限性。从使用工具到发明火,从农业文明到工业革命,每一次进步都代表着人类对自身能力的提升。如今,人工智能(AI)的快速发展,为人类提供了前所未有的机会,让我们迈向一个全新的时代——AI时代的人类增强时代。AI时代的人类增强,是指通过人工智能技术,提升人类的认知能力、身体能力和生活质量。这不仅
- Janus Pro:DeepSeek 开源革新,多模态 AI 的未来
后端
JanusPro是DeepSeek开发的一个开源多模态人工智能框架,它通过集成视觉和语言处理能力,提供了高性能的多模态任务处理能力。在线体验:https://deepseek-januspro.com/背景JanusPro于2025年1月发布,是一个开源的多模态AI框架,能够同时处理视觉和语言信息。它采用了独特的多模态架构,包括解耦的视觉编码框架和统一的Transformer架构,以及SigLIP
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号