接着看讲义,接下来这章应该是Self-Taught Learning and Unsupervised Feature Learning。
含义:
从字面上不难理解其意思。这里的self-taught learning指的是用非监督的方法提取特征,然后用监督方法进行分类。比如用稀疏自编码+softmax regression。
对于非监督特征学习,有两种类型,一类是self-taught learning,一类是semi-supervised learning。看他们的定义不如看讲义中给出的那个简单的例子:
假定有一个计算机视觉方面的任务,目标是区分汽车和摩托车图像;也即训练样本里面要么是汽车的图像,要么是摩托车的图像。哪里获取大量的无类标数据呢?最简单的方式可能是到互联网上下载一些随机的图像数据集,这这些数据上训练出一个稀疏自编码神经网络,从中得到有用的特征。这个例子里,无类标数据完全来自于一个和带类标数据不同的分布(无类标数据集中,或许其中一些图像包含汽车或者摩托车,但是不是所有的图像都如此)。这种情形被称为自学习。
相反,如果有大量的无类标图像数据,要么是汽车图像,要么是摩托车图像,仅仅是缺失了类标(没有标注每张图片到底是汽车还是摩托车)。也可以用这些无类标数据来学习特征。这种方式,即要求无类标样本和带类标样本服从相同的分布,有时候被称为半监督学习。在实践中,常常无法找到满足这种要求的无类标数据(到哪里找到一个每张图像不是汽车就是摩托车,只是丢失了类标的图像数据库?)因此,自学习被广泛的应用于从无类标数据集中学习特征。
练习:
下面是讲义中的练习,要解决的还是MNIST手写库的识别问题,主要过程就是稀疏自编码提取特征然后用softmax regression分类。
一开始用一台32位的机器跑,出现内存不够的情况,后来换了台64位的机器才好。主要代码如下:
stlExercise.m:
%% CS294A/CS294W Self-taught Learning Exercise % Instructions % ------------ % % This file contains code that helps you get started on the % self-taught learning. You will need to complete code in feedForwardAutoencoder.m % You will also need to have implemented sparseAutoencoderCost.m and % softmaxCost.m from previous exercises. % %% ====================================================================== % STEP 0: Here we provide the relevant parameters values that will % allow your sparse autoencoder to get good filters; you do not need to % change the parameters below. inputSize = 28 * 28; numLabels = 5; hiddenSize = 200; sparsityParam = 0.1; % desired average activation of the hidden units. % (This was denoted by the Greek alphabet rho, which looks like a lower-case "p", % in the lecture notes). lambda = 3e-3; % weight decay parameter beta = 3; % weight of sparsity penalty term maxIter = 400; %% ====================================================================== % STEP 1: Load data from the MNIST database % % This loads our training and test data from the MNIST database files. % We have sorted the data for you in this so that you will not have to % change it. % Load MNIST database files mnistData = loadMNISTImages('mnist/train-images-idx3-ubyte'); mnistLabels = loadMNISTLabels('mnist/train-labels-idx1-ubyte'); % Set Unlabeled Set (All Images) % Simulate a Labeled and Unlabeled set labeledSet = find(mnistLabels >= 0 & mnistLabels <= 4); unlabeledSet = find(mnistLabels >= 5); numTrain = round(numel(labeledSet)/2); trainSet = labeledSet(1:numTrain); testSet = labeledSet(numTrain+1:end); unlabeledData = mnistData(:, unlabeledSet); trainData = mnistData(:, trainSet); trainLabels = mnistLabels(trainSet)' + 1; % Shift Labels to the Range 1-5 testData = mnistData(:, testSet); testLabels = mnistLabels(testSet)' + 1; % Shift Labels to the Range 1-5 % Output Some Statistics fprintf('# examples in unlabeled set: %d\n', size(unlabeledData, 2)); fprintf('# examples in supervised training set: %d\n\n', size(trainData, 2)); fprintf('# examples in supervised testing set: %d\n\n', size(testData, 2)); %% ====================================================================== % STEP 2: Train the sparse autoencoder % This trains the sparse autoencoder on the unlabeled training % images. % Randomly initialize the parameters theta = initializeParameters(hiddenSize, inputSize); %% ----------------- YOUR CODE HERE ---------------------- % Find opttheta by running the sparse autoencoder on % unlabeledTrainingImages opttheta = theta; % Use minFunc to minimize the function addpath minFunc/ options.Method = 'lbfgs'; % Here, we use L-BFGS to optimize our cost % function. Generally, for minFunc to work, you % need a function pointer with two outputs: the % function value and the gradient. In our problem, % sparseAutoencoderCost.m satisfies this. options.maxIter = 400; % Maximum number of iterations of L-BFGS to run options.display = 'on'; [opttheta, cost] = minFunc( @(p) sparseAutoencoderCost(p, ... inputSize, hiddenSize, ... lambda, sparsityParam, ... beta, unlabeledData), ... theta, options); %% ----------------------------------------------------- % Visualize weights W1 = reshape(opttheta(1:hiddenSize * inputSize), hiddenSize, inputSize); display_network(W1'); %====================================================================== %% STEP 3: Extract Features from the Supervised Dataset % % You need to complete the code in feedForwardAutoencoder.m so that the % following command will extract features from the data. trainFeatures = feedForwardAutoencoder(opttheta, hiddenSize, inputSize, ... trainData); testFeatures = feedForwardAutoencoder(opttheta, hiddenSize, inputSize, ... testData); %====================================================================== %% STEP 4: Train the softmax classifier softmaxModel = struct; %% ----------------- YOUR CODE HERE ---------------------- % Use softmaxTrain.m from the previous exercise to train a multi-class % classifier. % Use lambda = 1e-4 for the weight regularization for softmax % You need to compute softmaxModel using softmaxTrain on trainFeatures and % trainLabels options.maxIter = 100; softmax_lambda = 1e-4; inputSize = 200; %features的维度与data的维度不一样了 softmaxModel = softmaxTrain(inputSize, numLabels, softmax_lambda, ... trainFeatures, trainLabels, options); %% ----------------------------------------------------- %%====================================================================== %% STEP 5: Testing %% ----------------- YOUR CODE HERE ---------------------- % Compute Predictions on the test set (testFeatures) using softmaxPredict % and softmaxModel [pred] = softmaxPredict(softmaxModel, testFeatures); acc = mean(testLabels(:) == pred(:)); fprintf('Accuracy: %0.3f%%\n', acc * 100); %% ----------------------------------------------------- % Classification Score fprintf('Test Accuracy: %f%%\n', 100*mean(pred(:) == testLabels(:))); % (note that we shift the labels by 1, so that digit 0 now corresponds to % label 1) % % Accuracy is the proportion of correctly classified images % The results for our implementation was: % % Accuracy: 98.3% % %
feedForwardAutoencoder.m:
function [activation] = feedForwardAutoencoder(theta, hiddenSize, visibleSize, data) % theta: trained weights from the autoencoder % visibleSize: the number of input units (probably 64) % hiddenSize: the number of hidden units (probably 25) % data: Our matrix containing the training data as columns. So, data(:,i) is the i-th training example. % We first convert theta to the (W1, W2, b1, b2) matrix/vector format, so that this % follows the notation convention of the lecture notes. W1 = reshape(theta(1:hiddenSize*visibleSize), hiddenSize, visibleSize); b1 = theta(2*hiddenSize*visibleSize+1:2*hiddenSize*visibleSize+hiddenSize); %% ---------- YOUR CODE HERE -------------------------------------- % Instructions: Compute the activation of the hidden layer for the Sparse Autoencoder. activation = W1*data+repmat(b1,[1,size(data,2)]); activation = sigmoid(activation); %------------------------------------------------------------------- end %------------------------------------------------------------------- % Here's an implementation of the sigmoid function, which you may find useful % in your computation of the costs and the gradients. This inputs a (row or % column) vector (say (z1, z2, z3)) and returns (f(z1), f(z2), f(z3)). function sigm = sigmoid(x) sigm = 1 ./ (1 + exp(-x)); end
实验结果如下:
最终的正确率:
讲义和代码中提到正确率在98.3%,基本差不多。