Deep Learning 学习随记(六)Linear Decoder 线性解码

线性解码器(Linear Decoder)

前面第一章提到稀疏自编码器(http://www.cnblogs.com/bzjia-blog/p/SparseAutoencoder.html)的三层网络结构,我们要满足最后一层的输出:a(3)≈a(1)(即输入值x)的近似重建。考虑到在最后一层的a(3)=f(z(3)),这里f一般用sigmoid函数或tanh函数等非线性函数,而将输出界定在一个范围内(比如sigmoid函数使结果在[0,1]中)。这对于有些数据组,例如MNIST手写数字库中其输入输出范围符合极佳,但并不是所有的情况都满足这个条件。例如,若采用PCA白化,输入将不再限制于[0,1],虽可通过缩放数据来确保其符合特定范围内,但显然,这不是最好的方式。

因此,这里提到的Linear Decoder就是通过在最后一层用激励函数:a(3) = z(3)(也即f(z)=z)来实现。这里要注意到,只是在最后一层用这个激励函数,其他隐层的激励函数仍然是sigmoid函数或者tanh函数,我们仅在输出层中使用线性激励机制。

这样一来,在求梯度的时候,公式:

 

就应该改成:

这个是显然的,因为f'(z)=1。其他层的都不需要改变。

 

练习:

这里讲义给出了一个练习,基本跟稀疏自编码一样,只有几处需要稍微改动一下。

linearDecoderExercise.m

%% CS294A/CS294W Linear Decoder Exercise



%  Instructions

%  ------------

% 

%  This file contains code that helps you get started on the

%  linear decoder exericse. For this exercise, you will only need to modify

%  the code in sparseAutoencoderLinearCost.m. You will not need to modify

%  any code in this file.



%%======================================================================

%% STEP 0: Initialization

%  Here we initialize some parameters used for the exercise.



imageChannels = 3;     % number of channels (rgb, so 3)



patchDim   = 8;          % patch dimension

numPatches = 100000;   % number of patches



visibleSize = patchDim * patchDim * imageChannels;  % number of input units 

outputSize  = visibleSize;   % number of output units

hiddenSize  = 400;           % number of hidden units 



sparsityParam = 0.035; % desired average activation of the hidden units.

lambda = 3e-3;         % weight decay parameter       

beta = 5;              % weight of sparsity penalty term       



epsilon = 0.1;           % epsilon for ZCA whitening



%%======================================================================

%% STEP 1: Create and modify sparseAutoencoderLinearCost.m to use a linear decoder,

%          and check gradients

%  You should copy sparseAutoencoderCost.m from your earlier exercise 

%  and rename it to sparseAutoencoderLinearCost.m. 

%  Then you need to rename the function from sparseAutoencoderCost to

%  sparseAutoencoderLinearCost, and modify it so that the sparse autoencoder

%  uses a linear decoder instead. Once that is done, you should check 

% your gradients to verify that they are correct.



% NOTE: Modify sparseAutoencoderCost first!



% To speed up gradient checking, we will use a reduced network and some

% dummy patches



debugHiddenSize = 5;

debugvisibleSize = 8;

patches = rand([8 10]);

theta = initializeParameters(debugHiddenSize, debugvisibleSize); 



[cost, grad] = sparseAutoencoderLinearCost(theta, debugvisibleSize, debugHiddenSize, ...

                                           lambda, sparsityParam, beta, ...

                                           patches);



% Check gradients

numGrad = computeNumericalGradient( @(x) sparseAutoencoderLinearCost(x, debugvisibleSize, debugHiddenSize, ...

                                                  lambda, sparsityParam, beta, ...

                                                  patches), theta);



% Use this to visually compare the gradients side by side

disp([numGrad grad]); 



diff = norm(numGrad-grad)/norm(numGrad+grad);

% Should be small. In our implementation, these values are usually less than 1e-9.

disp(diff); 



assert(diff < 1e-9, 'Difference too large. Check your gradient computation again');



% NOTE: Once your gradients check out, you should run step 0 again to

%       reinitialize the parameters

%}



%%======================================================================

%% STEP 2: Learn features on small patches

%  In this step, you will use your sparse autoencoder (which now uses a 

%  linear decoder) to learn features on small patches sampled from related

%  images.



%% STEP 2a: Load patches

%  In this step, we load 100k patches sampled from the STL10 dataset and

%  visualize them. Note that these patches have been scaled to [0,1]



load stlSampledPatches.mat



displayColorNetwork(patches(:, 1:100));



%% STEP 2b: Apply preprocessing

%  In this sub-step, we preprocess the sampled patches, in particular, 

%  ZCA whitening them. 

% 

%  In a later exercise on convolution and pooling, you will need to replicate 

%  exactly the preprocessing steps you apply to these patches before 

%  using the autoencoder to learn features on them. Hence, we will save the

%  ZCA whitening and mean image matrices together with the learned features

%  later on.



% Subtract mean patch (hence zeroing the mean of the patches)

meanPatch = mean(patches, 2);  

patches = bsxfun(@minus, patches, meanPatch);



% Apply ZCA whitening

sigma = patches * patches' / numPatches;

[u, s, v] = svd(sigma);

ZCAWhite = u * diag(1 ./ sqrt(diag(s) + epsilon)) * u';

patches = ZCAWhite * patches;



displayColorNetwork(patches(:, 1:100));



%% STEP 2c: Learn features

%  You will now use your sparse autoencoder (with linear decoder) to learn

%  features on the preprocessed patches. This should take around 45 minutes.



theta = initializeParameters(hiddenSize, visibleSize);



% Use minFunc to minimize the function

addpath minFunc/



options = struct;

options.Method = 'lbfgs'; 

options.maxIter = 400;

options.display = 'on';



[optTheta, cost] = minFunc( @(p) sparseAutoencoderLinearCost(p, ...

                                   visibleSize, hiddenSize, ...

                                   lambda, sparsityParam, ...

                                   beta, patches), ...

                              theta, options);



% Save the learned features and the preprocessing matrices for use in 

% the later exercise on convolution and pooling

fprintf('Saving learned features and preprocessing matrices...\n');                          

save('STL10Features.mat', 'optTheta', 'ZCAWhite', 'meanPatch');

fprintf('Saved\n');



%% STEP 2d: Visualize learned features



W = reshape(optTheta(1:visibleSize * hiddenSize), hiddenSize, visibleSize);

b = optTheta(2*hiddenSize*visibleSize+1:2*hiddenSize*visibleSize+hiddenSize);

displayColorNetwork( (W*ZCAWhite)');

 

 sparseAutoencoderLinearCost.m

function [cost,grad,features] = sparseAutoencoderLinearCost(theta, visibleSize, hiddenSize, ...

                                                            lambda, sparsityParam, beta, data)

% -------------------- YOUR CODE HERE --------------------

% Instructions:

%   Copy sparseAutoencoderCost in sparseAutoencoderCost.m from your

%   earlier exercise onto this file, renaming the function to

%   sparseAutoencoderLinearCost, and changing the autoencoder to use a

%   linear decoder.

                                   

% visibleSize: the number of input units (probably 64) 

% hiddenSize: the number of hidden units (probably 25) 

% lambda: weight decay parameter

% sparsityParam: The desired average activation for the hidden units (denoted in the lecture

%                           notes by the greek alphabet rho, which looks like a lower-case "p").

% beta: weight of sparsity penalty term

% data: Our 64x10000 matrix containing the training data.  So, data(:,i) is the i-th training example. 

  

% The input theta is a vector (because minFunc expects the parameters to be a vector). 

% We first convert theta to the (W1, W2, b1, b2) matrix/vector format, so that this 

% follows the notation convention of the lecture notes. 



%将长向量转换成每一层的权值矩阵和偏置向量值

W1 = reshape(theta(1:hiddenSize*visibleSize), hiddenSize, visibleSize);

W2 = reshape(theta(hiddenSize*visibleSize+1:2*hiddenSize*visibleSize), visibleSize, hiddenSize);

b1 = theta(2*hiddenSize*visibleSize+1:2*hiddenSize*visibleSize+hiddenSize);

b2 = theta(2*hiddenSize*visibleSize+hiddenSize+1:end);



% Cost and gradient variables (your code needs to compute these values). 

% Here, we initialize them to zeros. 

cost = 0;

W1grad = zeros(size(W1)); 

W2grad = zeros(size(W2));

b1grad = zeros(size(b1)); 

b2grad = zeros(size(b2));



%% ---------- YOUR CODE HERE --------------------------------------





Jcost = 0;%直接误差

Jweight = 0;%权值惩罚

Jsparse = 0;%稀疏性惩罚

[n m] = size(data);%m为样本的个数,n为样本的特征数



%前向算法计算各神经网络节点的线性组合值和active值

z2 = W1*data+repmat(b1,1,m);%注意这里一定要将b1向量复制扩展成m列的矩阵

a2 = sigmoid(z2);

z3 = W2*a2+repmat(b2,1,m);

a3 = z3;                                             %线性解码器************



% 计算预测产生的误差

Jcost = (0.5/m)*sum(sum((a3-data).^2));



%计算权值惩罚项

Jweight = (1/2)*(sum(sum(W1.^2))+sum(sum(W2.^2)));



%计算稀释性规则项

rho = (1/m).*sum(a2,2);%求出第一个隐含层的平均值向量

Jsparse = sum(sparsityParam.*log(sparsityParam./rho)+ ...

        (1-sparsityParam).*log((1-sparsityParam)./(1-rho)));



%损失函数的总表达式

cost = Jcost+lambda*Jweight+beta*Jsparse;



%反向算法求出每个节点的误差值

d3 = -(data-a3);                                         %线性解码器**************

sterm = beta*(-sparsityParam./rho+(1-sparsityParam)./(1-rho));%因为加入了稀疏规则项,所以

                                                             %计算偏导时需要引入该项

d2 = (W2'*d3+repmat(sterm,1,m)).*sigmoidInv(z2); 



%计算W1grad 

W1grad = W1grad+d2*data';

W1grad = (1/m)*W1grad+lambda*W1;



%计算W2grad  

W2grad = W2grad+d3*a2';

W2grad = (1/m).*W2grad+lambda*W2;



%计算b1grad 

b1grad = b1grad+sum(d2,2);

b1grad = (1/m)*b1grad;%注意b的偏导是一个向量,所以这里应该把每一行的值累加起来



%计算b2grad 

b2grad = b2grad+sum(d3,2);

b2grad = (1/m)*b2grad;



%-------------------------------------------------------------------

% After computing the cost and gradient, we will convert the gradients back

% to a vector format (suitable for minFunc).  Specifically, we will unroll

% your gradient matrices into a vector.



grad = [W1grad(:) ; W2grad(:) ; b1grad(:) ; b2grad(:)];



end



%-------------------------------------------------------------------

% Here's an implementation of the sigmoid function, which you may find useful

% in your computation of the costs and the gradients.  This inputs a (row or

% column) vector (say (z1, z2, z3)) and returns (f(z1), f(z2), f(z3)). 



function sigm = sigmoid(x)



    sigm = 1 ./ (1 + exp(-x));

end



%sigmoid函数的逆函数

function sigmInv = sigmoidInv(x)



    sigmInv = sigmoid(x).*(1-sigmoid(x));

end

只是对稀疏自编码器的代码进行了两处稍微的改动。

结果:

Deep Learning 学习随记(六)Linear Decoder 线性解码

学习到的特征也放在了STL10Features.mat里,将要在下一章的练习中用到。

 PS:讲义地址:

http://deeplearning.stanford.edu/wiki/index.php/Linear_Decoders

http://deeplearning.stanford.edu/wiki/index.php/Exercise:Learning_color_features_with_Sparse_Autoencoders

你可能感兴趣的:(decode)