3. 克鲁斯卡尔(Kruskal) 算法
克鲁斯卡尔算法的基本思想是:对一个有n个顶点的无向连通图,将图中的边按权值大小依次选取,若选取的边使生成树不形成回路,则把它加入到树中;若形成回路,则将它舍弃。如此进行下去,直到树中包含有n-1条边为止。(当整个图为连通图时为n-1条边)
根据邻接矩阵存储结构实现Kruskal算法:(邻接链表的实现在前面的博客)
public void Kruskal() { bool[,] markers = new bool[NodeNum, NodeNum]; Dictionary<AdjListNode<T>, VexListNode<T>> dic = new Dictionary<AdjListNode<T>, VexListNode<T>>(); while (true) { AdjListNode<T> adjNode = null; VexListNode<T> vexNode = null; AdjListNode<T> currentAdjNode = null; VexListNode<T> currentVexNode = null; for (int j = 0; j < NodeNum; j++) { currentVexNode = vexList[j]; currentAdjNode = currentVexNode.FirstAdj; while (currentAdjNode != null) { if (markers[j, currentAdjNode.AdjVexIndex] == false) { if (adjNode == null || currentAdjNode.Weight < adjNode.Weight) { vexNode = currentVexNode; adjNode = currentAdjNode; } } currentAdjNode = currentAdjNode.Next; } } if (adjNode == null) break; dic.Add(adjNode, vexNode); markers[IsNode(vexNode.Node), adjNode.AdjVexIndex] = true; markers[adjNode.AdjVexIndex, IsNode(vexNode.Node)] = true; bool ifCycle = true; while (ifCycle) { ifCycle = false; for (int j = 0; j < NodeNum; j++) { for (int k = 0; k < NodeNum; k++) { if (markers[j, k] == true) { for (int m = 0; m < NodeNum; m++) { if (m == k) continue; if (markers[k, m] == true && markers[j, m] == false) { markers[j, m] = true; markers[m, j] = true; ifCycle = true; } } } } } } } foreach (var i in dic.Keys) { Console.WriteLine(dic[i].Node.Value.ToString() + " -> " + i.Weight + " -> " + vexList[i.AdjVexIndex].Node.Value.ToString()); } }
调用代码:
GraphAdjList<int> adjList = new GraphAdjList<int>(100); //Inial graph object GraphNode<int> node1 = new GraphNode<int>(1); GraphNode<int> node2 = new GraphNode<int>(2); GraphNode<int> node3 = new GraphNode<int>(3); GraphNode<int> node4 = new GraphNode<int>(4); GraphNode<int> node5 = new GraphNode<int>(5); GraphNode<int> node6 = new GraphNode<int>(6); GraphNode<int> node7 = new GraphNode<int>(7); GraphNode<int> node8 = new GraphNode<int>(8); adjList.SetNode(node1); adjList.SetNode(node2); adjList.SetNode(node3); adjList.SetNode(node4); adjList.SetNode(node5); adjList.SetNode(node6); adjList.SetNode(node7); adjList.SetNode(node8); adjList.SetEdge(0, node2, node1, 2); adjList.SetEdge(1,node1, node3, 4); adjList.SetEdge(2,node1, node4, 4); adjList.SetEdge(3, node1, node5, 3); adjList.SetEdge(4, node2, node3, 3); adjList.SetEdge(5, node2, node4, 1); adjList.SetEdge(6, node2, node5, 2); adjList.SetEdge(7, node3, node4, 4); adjList.SetEdge(8, node3, node5, 4); adjList.SetEdge(9, node5, node4, 2); adjList.SetEdge(10, node6, node7, 3); adjList.SetEdge(11, node8, node6, 2); adjList.SetEdge(12, node7, node8, 3); adjList.Kruskal(); System.Console.ReadKey();
输出为:
2 -> 1 -> 4
2 -> 2 -> 5
2 -> 2 -> 1
8 -> 2 -> 6
2 -> 3 -> 3
6 -> 3 -> 7