- 动态规划与一维数组
debug_running_Hu
动态规划算法
动态规划与一维数组的结合主要用于解决那些状态可以由单个变量表示的问题。这通常意味着问题具有某种线性或单调递增的性质。一维数组dp[i]存储的是到达状态i的最优解。状态i的最优解通常依赖于它之前状态(0到i-1)的最优解。让我们通过几个例子来详细讲解:1.斐波那契数列:这是动态规划中最经典的例子之一。斐波那契数列的第n项定义为前两项之和:F(n)=F(n-1)+F(n-2),其中F(0)=0,F(1
- 动态规划与回溯算法融合【高效解决组合、排列与子集问题】
一键难忘
算法之翼算法动态规划代理模式
本文收录于专栏:算法之翼动态规划与回溯算法融合【高效解决组合、排列与子集问题】动态规划(DynamicProgramming)和回溯算法(Backtracking)是解决复杂问题的两种重要算法。它们在许多问题中表现出色,但当两者结合使用时,能够更高效地解决一些特定类型的问题,如子集、排列和组合问题。这篇文章将探讨动态规划与回溯算法的结合,并通过代码实例展示如何应用这种结合方法解决实际问题。动态规划
- C语言青蛙跳台阶问题
共享家9527
c语言
在算法学习中,青蛙跳台阶问题是一个经典的递归和动态规划入门案例。它通过简单的场景,揭示了复杂的算法思想,非常适合初学者理解递归与动态规划的核心概念。一、问题描述一只青蛙要跳上n级台阶,每次它可以跳1级或者2级台阶。那么,青蛙跳上n级台阶总共有多少种不同的跳法呢?二、解题思路递归思路:-对于第n级台阶,青蛙到达它的方式要么是从第n-1级台阶跳1级上来,要么是从第n-2级台阶跳2级上来。-所以,跳上n
- 2023年数学建模动态规划算法在最短路径问题中的应用:以Floyd算法为例
人工智能_SYBH
算法matlab数据结构动态规划
订阅专栏后9月比赛期间会分享思路及Matlab代码数学建模是将实际问题抽象化为数学问题,并采用数学工具和技巧进行求解的过程。在实际应用中,数学建模是解决问题的一种有效方法。本文将介绍Floyd算法在数学建模中的应用。Floyd算法是解决最短路径问题的一种经典动态规划算法。最短路径问题是指在一个加权有向图中,从一个源节点到其他各节点的最短路径问题。在实际应用中,最短路径问题广泛应用于交通运输、通信网
- 动态规划详解-最小路径和问题【python】
数据分析螺丝钉
LeetCode刷题与模拟面试动态规划算法leetcodepython数据结构
作者介绍:10年大厂数据\经营分析经验,现任大厂数据部门负责人。会一些的技术:数据分析、算法、SQL、大数据相关、python欢迎加入社区:码上找工作作者专栏每日更新:LeetCode解锁1000题:打怪升级之旅python数据分析可视化:企业实战案例备注说明:方便大家阅读,统一使用python,带必要注释,公众号数据分析螺丝钉一起打怪升级1.问题介绍和应用场景最小路径和问题是一个常见的动态规划问
- 数据结构与算法再探(六)动态规划
刀客123
数据结构与算法动态规划算法
目录动态规划(DynamicProgramming,DP)动态规划的基本思想动态规划的核心概念动态规划的实现步骤动态规划实例1、爬楼梯c++递归(超时)需要使用记忆化递归循环2、打家劫舍3、最小路径和4、完全平方数5、最长公共子序列6、0-1背包问题总结动态规划(DynamicProgramming,DP)释义:动态规划是一种解决复杂问题的优化方法,通过将大问题拆解成小问题,逐步解决小问题,最终得
- 【算法】动态规划:从斐波那契数列到背包问题
杰九
优质文章算法动态规划
【算法】动态规划:从斐波那契数列到背包问题文章目录【算法】动态规划:从斐波那契数列到背包问题1.斐波那契数列2.爬楼梯3.零钱转换Python代码4.零钱兑换II5.组合数dp和排列数dp6.为什么动态规划的核心思想计算组合数的正确方法代码实现为什么先遍历硬币再遍历金额可以计算组合数详细解释举例说明最终结果具体组合情况为什么有效7.背包问题01背包问题定义完全背包问题定义示例为什么需要倒序遍历8.
- 【Day24 LeetCode】贪心Ⅱ
银河梦想家
leetcode算法
一、贪心Ⅱ1、买卖股票的最佳时机II122这题第一想法是使用动态规划做,每天有两个状态,持有股票和非持有股票,每次计算这两个状态下的最优值。classSolution{public:intmaxProfit(vector&prices){//表示当前没有/有股票的两个状态intdp0=0,dp1=-prices[0];for(inti=1;i&prices){intans=0;for(inti=1
- (C++)P1216数字三角形(动态规划)⭐⭐⭐⭐
*TQK*
算法练习c++动态规划
[USACO1.5][IOI1994]数字三角形NumberTriangles-洛谷题目描述观察下面的数字金字塔。写一个程序来查找从最高点到底部任意处结束的路径,使路径经过数字的和最大。每一步可以走到左下方的点也可以到达右下方的点。在上面的样例中,从7→3→8→7→5的路径产生了最大权值。输入格式第一个行一个正整数r,表示行的数目。后面每行为这个数字金字塔特定行包含的整数。输出格式单独的一行,包含
- 动态规划汇总5
get_zhang_
动态规划子串子序列动态规划算法开发语言leetcode
1.最长递增子序列力扣题目链接(opensnewwindow)给你一个整数数组nums,找到其中最长严格递增子序列的长度。子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7]是数组[0,3,1,6,2,2,7]的子序列。示例1:输入:nums=[10,9,2,5,3,7,101,18]输出:4解释:最长递增子序列是[2,3,7,101],因此长
- 数据结构与算法:动态规划dp:理论基础和相关力扣题(509.斐波那契数列、70.爬楼梯、62. 不同路径、63.不同路径Ⅱ、343.整数拆分)
shanshandeisu
数据结构与算法LeetCode动态规划leetcode算法dp力扣数据结构
1.0.理论基础动态规划主要解决的问题种类有:背包问题打家劫舍股票问题子序列问题解决步骤:dp数组及其下标的意义递推公式dp数组初始化遍历顺序打印dp数组2.0.相关力扣题509.斐波那契数列classSolution:deffib(self,n:int)->int:ifn==0:return0ifn==1:return1dp=[0]*35dp[1]=1foriinrange(2,31):dp[i
- 最多获得的短信条数_云短信平台优惠活动_200分_A卷_动态规划
bug小王爷
华为OD机试真题(JavaA卷+B卷)动态规划华为od华为java
最多获得的短信条数_云短信平台优惠活动题目描述:某云短信厂商,为庆祝国庆,推出充值优惠活动。现在给出客户预算,和优惠售价序列,求最多可获得的短信总条数。输入输出描述:输入描述: 第一行客户预算M,其中0≤M≤10^6 第二行给出售价表,P1,P2,…Pn,其中1≤n≤100, Pi为充值i元获得的短信条数。 1≤Pi≤1000,1≤n≤100输出描述: 最多获得的短信条数示例1:输入:6
- 动态规划(Dynamic Programming,简称 DP)
佛渡红尘
计算机应用与算法动态规划代理模式算法
动态规划(DynamicProgramming,简称DP)是一种在数学、计算机科学和经济学中使用的,通过把原问题分解为相对简单的子问题的方式来求解复杂问题的方法。动态规划常常适用于有重叠子问题和最优子结构性质的问题。通过保存和重用已经解决的子问题的解,来避免重复计算,从而大大提高了算法的效率。动态规划的基本思想是将一个复杂的问题分解为若干个相对简单的子问题,通过求解子问题,并将这些子问题的解保存起
- 题目:解码方法(来自leetcode)动态规划----斐波那契模型
清风逸梦
leetcode动态规划算法
解码方法题目动态规划(5步走)状态表示状态转移方程初始化填表顺序返回值代码题目链接题目动态规划(5步走)状态表示dp[i]表示为从下标i之前的的解码数。状态转移方程以i位置为终点,下标为i的位置有两种方式:第一种就是单独解码,第二种就是与前面的一位数合并解码。单独解码有分两种情况:第一种是:当s[i]在[1,9]时可以单独解码,就相当于在dp[i-1]种情况后接上一个单独解码,所以dp[i]=dp
- 蓝桥杯Python组最后几天冲刺———吐血总结,练题总结,很管用我学会了
晚风时亦鹿
学习笔记Python算法笔记python
一、重要知识要点1、穷举法2、枚举法3、动态规划4、回溯法5、图论6、深度优先搜索(DFS)7、广度优先搜索(BFS)8、二叉树9、递归10、分治法、矩阵法11、排列组合12、素数、质数、水仙花数13、欧几里得定理gcd14、求最大公约数、最小公倍数15、海伦公式(求三角形面积)16、博弈论17、贪心18、二分查找法19、hash表20、日期计算21、矩形快速幂22、树形DP23、最短路径24、最
- Python 最最最使用的动态规划入门教程 + 10道经典例题
我是阿核
Python动态规划算法pythonleetcode
不多废话,直接开讲动态规划三大步骤动态规划是一种将问题分解为若干个子问题,并存储这些子问题的解(通常使用数组或矩阵等数据结构),以便在后续计算中重复使用,从而避免了重复计算,提高了算法的效率。需要注意的是,动态规划并非一种特定的算法,而是一种解决问题的思想和方法。在实际应用中,需要根据具体问题的特点来设计合适的动态规划算法。动态规划的根本在于用已知项的求出未知项,并再次调用已经求出的未知项来解决更
- 动态规划,蒙特卡洛,TD,Qlearing,Sars,DQN,REINFORCE算法对比
青椒大仙KI11
动态规划算法机器学习深度学习
动态规划(DynamicProgramming,DP)通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。动态规划的步骤识别子问题:定义问题的递归解法,识别状态和选择。确定DP数组:确定存储子问题解的数据结构,通常是数组或矩阵。确定状态转移方程:找出状态之间的关系,即状态转移方程。边界条件:确定DP数组的初始值或边界条件。填表:按照顺序填入DP表,通常是从最小的子问题开始。构造最优解:根据
- C++爬楼梯——dfs、递归、动态规划、递推
*TQK*
编程语言知识点算法练习数据结构c++算法
什么是动态规划:给定一个问题,我们把他拆成一个个子问题,直到子问题可以直接解决。然后把子问题的答案保存起来,以减少重复计算。再根据子问题的答案反推,得出原问题解的一种方法递归的过程:"递"的过程是分解子问题的过程;(dfs是第归的一种)“归”的过程是产生答案的过程。“递”的过程是自顶向下。“归”的过程是自底向上,“底”代表的是已知最小子问题的答案递归适用于以下情况:1.问题具有递归结构:问题可以自
- [前端算法]动态规划
摇光93
算法算法动态规划
最优子结构,重叠子问题爬楼梯递归+记忆化搜索自顶向下varclimbStairs=function(n){letmap=[]functiondfs(n){if(n=coins[j]){dp[i]=Math.min(dp[i],dp[i-coins[j]]+1);}}}if(dp[amount]===Infinity){return-1;}returndp[amount];}01背包问题functi
- 贪心与动规(动态规划)
programming expert
动态规划算法
1.贪心与动规的区别贪心算法和动态规划的主要区别在于它们解决问题的方式、能否保证得到最优解以及算法复杂度。解决问题的方式:贪心算法:在每一步选择中都采取当前状态下最优的选择,从而希望导致结果是全局最优的。它通常不考虑未来后果,只关注当前的最优解。动态规划:将原问题分解为子问题,通过解决子问题,并将子问题的解存储下来(通常是存储在一个表格中),在解决原问题时利用这些子问题的解。它通常以自底向
- 程序设计思考:归零思想
hookby
程序设计
“归零思想”是一种在程序设计中常用的思考方法,主要指的是通过将某些值或状态归零,来简化问题或解决复杂度。这个思想在许多领域中都可以找到应用,尤其是在处理问题时需要清理和重置状态,避免累积错误或多余的计算。下面是几个典型的应用场景:1.状态重置在某些算法中,特别是动态规划、回溯、递归等问题中,我们可能需要在每个阶段重置某些变量或状态,防止它们影响后续的计算。例如,在递归算法中,递归结束后可以通过将某
- 为什么算法很难掌握
浅墨cgz
算法
算法之所以难以掌握,主要是因为以下几个原因:1.抽象性算法是对问题的抽象解决方案,通常不依赖于具体的编程语言或实现细节。初学者可能难以将抽象的逻辑转化为具体的代码。例如,动态规划(DP)的核心思想是将问题分解为子问题并存储中间结果,但这种抽象思维需要大量练习才能掌握。2.数学基础要求许多算法依赖于数学知识,例如:时间复杂度分析:需要理解大O表示法、递归关系等。图论算法:需要了解图的基本概念(如节点
- 代码随想录训练营第三十八天| 322. 零钱兑换 279.完全平方数 139.单词拆分 背包问题总结篇
chengooooooo
算法
322.零钱兑换题目链接:322.零钱兑换-力扣(LeetCode)讲解链接:代码随想录和昨天做过的零钱对换不太一样昨天的零钱兑换是完全背包里的球排列问题这个是求在指定的背包容量内求最小的组合数动态规划五部曲1定义dp方程我们假设用了dp[j]个硬币去凑j容量的背包要求dp[j]最小2推导递推公式首先最少用j-coins[i]个硬币来凑dp[j-coins[i]]容量的金额(背包)(不加上他本身的
- 动态规划的小总结(一)
抽奖开出西瓜
动态规划动态规划算法
前言这篇文章展示了规范化的动态规划做题步骤。部分内容借鉴了代码随想录代码随想录-动态规划509.斐波那契数题目描述和思路力扣题目链接(opensnewwindow)斐波那契数,通常用F(n)表示,形成的序列称为斐波那契数列。该数列由0和1开始,后面的每一项数字都是前面两项数字的和。也就是:F(0)=0,F(1)=1F(n)=F(n-1)+F(n-2),其中n>1给你n,请计算F(n)。典型的动态规
- Leetcode416. 分割等和子集
会流泪de鱼
Leetcode算法数据结构动态规划
Leetcode416.分割等和子集题目:给你一个只包含正整数的非空数组nums。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。示例1:输入:nums=[1,5,11,5]输出:true解释:数组可以分割成[1,5,5]和[11]。示例2:输入:nums=[1,2,3,5]输出:false解释:数组不能分割成两个元素和相等的子集。题解:动态规划:数组长度ntarget\tex
- 蓝桥杯备赛笔记(九)动态规划(一)
小魏´•ﻌ•`
蓝桥杯C++蓝桥杯笔记动态规划
1.动态规划基础(1)线性DP1)什么是DP(动态规划)DP(动态规划)全称DynamicProgramming,是运筹学的一个分支,是一种将复杂问题分解成很多重叠的子问题,并通过子问题的解得到整个问题的解的算法。在动态规划中有一些概念:状态:就是形如dp[i][j]=val的取值,其中i,j为下标,也是用于描述、确定状态所需的变量,val为状态值。状态转移:状态与状态之间的转移关系,一般可以表示
- leetcode 115. 不同的子序列
fks143
leetcodeleetcode
题目:115.不同的子序列-力扣(LeetCode)动态规划问题,f[i][j]表示s的第i个元素匹配到t的第j个元素,有多少种结果f[i][j]=f[i-1][j]+(s[i]==t[j]?f[i-1][j-1]:0)答案就是f[s.length()-1][t.length()-1]#define_MAX_(1000000007)classSolution{public:intnumDistin
- 【c++】【算法】【动态规划】最长公共子序列
钟离墨笺
算法算法c++动态规划
【c++】【算法】【动态规划】最长公共子序列//递归方式//最长公共子序//直接递归求最长公共子序长度intFindValue(conststring&X,conststring&Y,inti,intj){if(i==0||j==0)return0;if(X[i]==Y[j])returnFindValue(X,Y,i-1,j-1)+1;elsereturnstd::max(FindValue(X
- leetcode-买卖股票问题
Only you680
leetcodeleetcode算法
309.买卖股票的最佳时机含冷冻期-力扣(LeetCode)动态规划解题思路:1、暴力递归(难点如何定义递归函数)2、记忆化搜索-傻缓存法(根据暴力递归可变参数确定缓存数组维度)3、严格表结构依赖的动态规划4、进一步优化(斜率优化、空间优化),非必须一、分析:假设[0,index-1]之前的最大利润已经知道,现在计算到了index位置的最大利润。根据题意,到index位置后可能有三种状态,买入、卖
- 最长回文字串的多种解法(java)
心 -
java
文章目录1.暴力解法2.中心扩散法3.动态规划法题目要求:给你一个字符串s,找到s中最长的回文子串1.暴力解法列举所有子串;将字符串分解为字符数组char[]arr,方便后续判断是否为回文字符串,接着使用两层for循环去跑字符串s,使用maxf初始化为1去记录最长回文字符串的长度,min记录最长字符串的起始下标。代码如下:publicStringlongestPalindrome(Strings)
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><