Real FFT

[文/告别年代   Email:[email protected]]

FFT算法是针对复信号的,而现实场景中很多时候时域是实信号,此时有两种办法加快FFT的速度。

1. 使用一个N点的复FFT同时处理两个N点的实序列

假定我们有两个N点的实序列x[n]和y[n],它们的FFT具有如下性质:实部偶对称,虚部奇对称。因此可将它们的FFT写为如下形式:

x[n] --F-->  Nyquist以下部分:a+bi;Nyquist以上部分:a-bi

y[n] --F-->  Nyquist以下部分:c+di;Nyquist以上部分:c-di

将这两个实信号拼成一个复信号z=x+yi,因FFT变换满足加法和乘法组合定理,z的FFT变换如下:

z[n] --F-->  Nyquist以下部分:p+qi = a+bi+i(c+di) = (a-d)+(b+c)i,即实部p=a-d, 虚部q=b+c

                 Nyquist以上部分:s+ti = a-bi+i(c-di) = (a+d)+(-b+c)i,即实部s=a+d, 虚部t=-b+c

于是我们可以从z[n]的变换结果p+qi和s+ti分离出x[n]和y[n]的FFT结果:

a=(p+s)/2

b=(q-t)/2

c=(q+t)/2

d=(-p+s)/2

下面是一个稍微正式点的推导:

取z[n]=x[n]+iy[n]

那么:

x[n]=(z[n]+z[n]*)/2

y[n]=-i(z[n]-z[n]*)/2

将上式变换到频域,设x,y,z,z*的FFT系数分别为Fx,Fy,Fz*

Fx=(Fz+Fz*)/2

Fy=-i(Fz-Fz*)/2

现在来看如何简便地获得Fz*

Fz*= ∑z[n]*e-jk(2π/N)n

   = ∑z[n]*{e+jk(2π/N)n}*

   = {∑z[n]e+jk(2π/N)n}*

   = {∑z[n]e+jk(2π/N)n-2π}*

   = {∑z[n]e-j(N-k)(2π/N)n}*

因此,Fz*[k]=(Fz[N-k])*

代入上面的Fx和Fy即可。

 

2. 使用一个N点的复FFT处理一个2N点的实序列

Real FFT_第1张图片

 

 

上式中将时域序列拆分为两个序列:偶序列fe和奇序列fo,我们可以发现这实际上就是FFT算法推导过程的第一步。

我们已经看过如何用一个N点复FFT计算两个N点实FFT,因此FFTN/2(k,fe)和FFTN/2(k,fo)的求解不是问题:

Real FFT_第2张图片

回顾下开头的式子:

上述三个式子组合一下:

这个就是我们需要的结果。

[文/告别年代   Email:[email protected]]

 

你可能感兴趣的:(FF)