hdu1003

Max Sum

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 138410    Accepted Submission(s): 32144


Problem Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
 

 

Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
 

 

Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
 

 

Sample Input
2 5 6 -1 5 4 -7 7 0 6 -1 1 -6 7 -5
 

 

Sample Output
Case 1: 14 1 4 Case 2: 7 1 6
 

 

Author
Ignatius.L
这题是一个经典dp问题,dp思想在于把问题分解成若干个子问题,在子问题最优的情况下得出最终最优结果,所以我们每一步都是建立在前一步是最优的基础之上的。所以解决dp问题,最基本的要在某种情景下,想到当前状态的最优情况是什么样的,最优后,接下来怎么办,不是最优的该怎么变成最优的。这就是我们的状态转移方程。
对于本问题,首先明确,连续的子段! 和最大 ,一个数组给我们,第一个数肯定当前最大,毋庸置疑,那么遇到下一个数,怎么判断和是当前最大呢?我们遇到正数,那肯定直接加,因为加完肯定比不加大,如果是负数呢?加上去,原来的和肯定变小,但不加怎么办呢?
基于以上问题 可以得出状态方程 dp[i]=d[i-1]+a[i]>a[i]?dp[i-1]+a[i]:a[i]  (dp[i]表示当前i下最大的子段和,a[i]是需要处理的数字)什么意思呢,当前数字加到之前的和上面后,如果大于当前数字,那么就执行加的操作,如果小于当前数字,就把当前和最大值dp[i]设置为a[i],可能有人问为什么要设置为a[i]。。记住,如果a[i]你不加上去,意味着你需要从新开始累加和了,我们要求是连续的子段和!!!
利用dp数组的代码:
 1 #include<iostream>

 2 #include<cstdio>

 3 #include<cstdlib>

 4 //#define LOCAL   

 5 using namespace std;

 6 

 7 

 8 int main()

 9 {

10 #ifdef LOCAL

11 freopen("d:datain.txt","r",stdin);

12 freopen("d:dataout.txt","w",stdout);

13 #endif 

14     int n;

15     while(scanf("%d",&n)!=EOF)

16     {

17         int i,m;

18         for(i =0 ; i< n;i++)

19         {

20             scanf("%d",&m);

21             int dp[100000],a[100000];

22             scanf("%d",&a[0]);

23             dp[0] = a[0];  //当前最大

24             for(int j = 1; j<m;j++)   //生成了dp状态数组了

25             {

26                 scanf("%d",&a[j]);

27                 if(dp[j-1]+a[j]<a[j])      //状态转移方程

28                     dp[j]=a[j];

29                 else

30                     dp[j]=dp[j-1]+a[j];

31             }

32             int Max,End;

33             Max = dp[0];

34             End = 0;

35             for(int j = 1 ;j<m;j++)           //寻找区间

36                 if(Max<dp[j])

37                 {

38                     End = j;

39                     Max = dp[j];

40                 }

41             int Begin = End;

42             int temp = 0;

43             for(int j = End;j>=0;j--)

44             {

45                 temp +=a[j];

46                 if(temp==dp[End])

47                     Begin = j;

48             }

49             cout<<"Case "<<i+1<<":"<<endl<<Max<<" "<<Begin+1<<" "<<End+1<<endl;

50             if(i<n-1)

51                 cout<<endl;

52         }

53     }

54     return 0;

55 }

简化后不带dp数组的,因为这题在dp问题中是比较简单的。

 1 //hdu 1003

 2 

 3 #include<stdio.h>

 4 int main()

 5 {

 6 

 7     int n;

 8     while(scanf("%d",&n)!=EOF)

 9     {

10         for(int i = 0;i<n;i++)

11         {

12             int a;

13             int Max  = -9999;

14             int sum  = 0,m;

15             int Begin=0,End=0,flag=0;

16             scanf("%d",&m);

17             scanf("%d",&a);

18             Max = sum = a;

19             for(int j = 1 ;j<m ;j++)

20             {

21                 scanf("%d",&a);

22                 if(sum<0)

23                 {

24                     sum=a;

25                     flag=j;

26                 }

27                 else

28                 {

29 

30                     sum=sum+a;

31                 }

32                 if(Max<sum)

33                 {

34                     Max = sum ;

35                     Begin =flag;

36                     End = j;

37                 }

38             }

39             printf("Case %d:\n%d %d %d\n",i+1,Max,Begin+1,End+1);

40             if(i<n-1)

41                 printf("\n");

42         }

43 

44     }

45     return 0;

46 }

 

你可能感兴趣的:(HDU)