- AI人工智能深度学习算法:在缺陷检测中的应用
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AI人工智能深度学习算法:在缺陷检测中的应用1.背景介绍1.1缺陷检测的重要性在制造业中,产品质量是关键因素之一。缺陷检测是确保产品质量的重要环节,旨在及时发现并排除产品中的任何缺陷或异常。传统的人工目视检测方法不仅效率低下,而且容易出现疲劳导致的错误。因此,开发高效、准确的自动化缺陷检测系统已成为当务之急。1.2人工智能在缺陷检测中的作用随着深度学习技术的不断发展,人工智能(AI)已成为解决缺陷
- AI人工智能深度学习算法:搭建可拓展的深度学习模型架构
AI天才研究院
大数据AI人工智能AI大模型企业级应用开发实战大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
AI人工智能深度学习算法:搭建可拓展的深度学习模型架构作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来随着人工智能技术的飞速发展,深度学习作为其主要驱动力之一,已经在各个领域取得了显著的成果。然而,随着模型规模的不断扩大,如何高效地搭建、训练和部署深度学习模型,成为一个亟待解决的问题。传统的单机训练方式在计算资源有限的情况
- AI人工智能深度学习算法:在生物信息学中的应用
AI大模型应用之禅
AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AI人工智能深度学习算法:在生物信息学中的应用关键词:人工智能、深度学习、生物信息学、基因组学、蛋白质结构预测、药物发现、个性化医疗文章目录AI人工智能深度学习算法:在生物信息学中的应用1.背景介绍2.核心概念与联系2.1人工智能(AI)2.2机器学习(ML)2.3深度学习(DL)2.4生物信息学2.5应用领域3.核心算法原理&具体操作步骤3.1算法原理概述3.1.1卷积神经网络(CNN)3.1.
- 2024 年高教社杯全国大学生数学建模竞赛 B 题 生产过程中的决策问题 详细思路+matlab代码+python代码+论文范例
2025年数学建模美赛
2024年数学建模国赛2024高教社杯2024B题生产过程中的决策问题思路2024数学建模国赛
持续更新中,2024年所有数学建模比赛思路代码都会发布到专栏内,只需要订阅一次。5号6号半价,会结合历年优秀论文、人工智能深度学习算法、chatgpt。会定期发布思路、代码和论文。思路和论文基本拿不到国奖,想要获得国奖的同学不要购买。适合基础差的学生,容易获得省奖!B题生产过程中的决策问题某企业生产某种畅销的电子产品,需要分别购买两种零配件(零配件1和零配件2),
- AI人工智能深度学习算法:高并发场景下深度学习代理的性能调优
AI天才研究院
计算AI大模型企业级应用开发实战ChatGPT计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1深度学习代理的兴起近年来,随着人工智能技术的飞速发展,深度学习在各个领域都取得了显著的成果。特别是在自然语言处理、图像识别、语音识别等领域,深度学习模型的性能已经超越了传统方法。为了更好地将深度学习技术应用于实际场景,深度学习代理应运而生。深度学习代理是一种将深度学习模型封装起来,并提供对外接口的服务。它可以接收来自客户端的请求,将请求数据输入到深度学习模型中进行推理,并将推理结
- 2024 年高教社杯全国大学生数学建模竞赛 E 题 交通流量管控 详细思路+matlab代码+python代码+论文范例
2024年数学建模国赛
备战2024数学建模国赛2024数学建模(不代写论文请勿盲目订阅)数学建模2024数学建模国赛2024数学建模国赛E题2024高教社杯
持续更新中,2024年所有数学建模比赛思路代码都会发布到专栏内,只需要订阅一次。5号6号半价,会结合历年优秀论文、人工智能深度学习算法、chatgpt。会定期发布思路、代码和论文。思路和论文基本拿不到国奖,想要获得国奖的同学不要购买。适合基础差的学生,容易获得省奖!随着城市化进程的加快、机动车的快速普及,以及人们活动范围的不断扩大,城市道路交通拥堵问题日渐严重,即使在一些非中心城市,道路交通拥堵问
- 2024 年高教社杯全国大学生数学建模竞赛 D 题 反潜航空深弹命中概率问题 详细思路+matlab代码+python代码+论文范例
2024年数学建模国赛
备战2024数学建模国赛2024数学建模(持续更新耐心等待)数学建模数学建模国赛2024数学建模国赛2024年高教社杯D题matlabpython
持续更新中,2024年所有数学建模比赛思路代码都会发布到专栏内,只需要订阅一次。5号6号半价,会结合历年优秀论文、人工智能深度学习算法、chatgpt。会定期发布思路、代码和论文。思路和论文基本拿不到国奖,想要获得国奖的同学不要购买。适合基础差的学生,容易获得省奖!应用深水炸弹(简称深弹)反潜,曾是二战时期反潜的重要手段,而随着现代军事技术的发展,鱼雷已成为现代反潜作战的主要武器。但是,在海峡或浅
- AI人工智能深度学习算法:卷积神经网络的原理与应用
AI大模型应用之禅
计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AI人工智能深度学习算法:卷积神经网络的原理与应用作者:禅与计算机程序设计艺术1.背景介绍1.1人工智能的兴起与深度学习的崛起人工智能(AI)是指计算机科学的一个分支,旨在创造能够执行通常需要人类智能的任务的智能机器,例如学习、解决问题和决策。近年来,人工智能取得了显著的进展,这在很大程度上归功于深度学习的崛起,深度学习是一种强大的机器学习形式,它使用具有多个层的深度神经网络来学习数据中的复杂模式
- 人工智能深度学习入门指南
白猫a~
编程深度学习人工智能
随着人工智能(AI)技术的飞速发展,深度学习作为其重要分支,已经成为许多领域的研究热点。深度学习通过模拟人脑神经网络的运作方式,使得机器能够处理和分析海量的数据,从而实现更高级别的智能。本文将为你提供一份深度学习入门指南,帮助你快速掌握深度学习的基本知识和应用技能。1.了解深度学习基本概念在开始深度学习之前,你需要了解一些基本概念,如神经网络、激活函数、损失函数、反向传播等。这些概念是深度学习的基
- 人工智能深度学习发展历程-纪年录
犟小孩
技术文档计算机视觉
前言为了理解模型之间的改进关系、明确深度学习的发展目标、提高自身对模型的深度理解、贯彻爱与和平的理念。总之,我做了如下表格。时间重大突破模型改进详细信息1847SGD随机梯度下降1995SVM支持向量机1982RNN循环神经网络,序列模型1986反向传播1997LSTM长短期时间记忆1998Lenet-5首次应用于手写识别2001随机森林2010ReLUrelu激活函数,解决梯度消失2012Dro
- 【NLP冲吖~】〇、NLP(自然语言处理、大纲)
漂泊老猫
自然语言处理NLP自然语言处理人工智能
0、自然语言处理自然语言处理是一门用于理解人类语言、情感和思想的技术,是人工智能深度学习领域的一项重要分支,去年爆火的GPT就是该分支的一个重要落地的应用。随着计算机算力的不断提升,自然语言处理技术近年来发展迅速,有代表模型BERT和GPT等;应用场景有chatbot、知识图谱、情感分析等。自然语言是与机器语言相对的一个概念,它是指人类在一定条件下自然形成和使用的口头或书面的语言,如汉语、英语、法
- 深度学习十年感悟,从入门到放弃
Ada's
Latex科研码上生活反思觉悟深度学习人工智能
写这篇在此主要是对自己对未来的思考和探索,绝没有指导和影响大家意思,我要准备放弃深度学习算法应用和研究去从事下一代操作系统和模拟信号处理芯片方面工作,主要是为自己以后事业机器人领域做点储备。14年左右从Octave及Matlab数学建模开始入门人工智能深度学习领域。当时情况是13年底我请教前辈后,在思考我们专业的未来是交通调度那么就是通信调度,最厉害的行业内也就是统计分析之类的很多体力性加上初步的
- 【ArcGIS Pro微课1000例】0046:深度学习--汽车检测
刘一哥GIS
《ArcGISarcgis深度学习汽车ArcGISpro人工智能
本实验讲述ArcGISPro中人工智能深度学习应用之–汽车检测。文章目录一、学习效果二、工具介绍三、案例实现四、注意事项一、学习效果采用深度学习工具,可以很快速精准的识别汽车。案例一:案例二:下面讲解GIS软件实现流程。二、工具介绍该案例演示的是ArcGISPro中深度学习工具中的【使用深度学习检测对象】,应用的模型是汽车检测模型CarDetection_USA.dlpk,大家可以从配套的实验数据
- PyTorch深度学习原理与实现
slience_me
机器学习深度学习pytorch人工智能
PyTorch深度学习原理与实现1.引言深度学习发展历程感知机网络(解决线性可分问题,20世纪40年代)BP神经网络(解决线性不可分问题,20世纪80年代)深度神经网络(海量图片分类,2010年左右)常见深度神经网络:CNN、RNN、LSTM、GRU、GAN、DBN、RBM……深度应用领域计算机视觉语音识别自然语言处理人机博弈深度学习、机器学习以及人工智能深度学习VS传统机器学习深度神经网络VS浅
- 亚马逊云AI大语言模型应用下的创新Amazon Transcribe的使用
lqj_本人
推广人工智能语言模型自然语言处理
Transcribe简介语音识别技术,也被称为自动语音识别(AutomaticSpeechRecognition,简称ASR),其目标是将人类的语音中的词汇内容转换为计算机可读的输入,例如按键、二进制编码或者字符序列。语音识别技术已经发展了几十年,直到2009年,Hinton把人工智能深度学习解决方案引入语音识别中,语音识别才取得了巨大突破。AmazonTranscribe是一项自动语音识别(AS
- 第五章:人工智能深度学习教程-人工神经网络(第一节-人工神经网络及其应用)
geeks老师
人工智能深度学习人工智能深度学习神经网络机器学习自然语言处理知识图谱生成对抗网络
当您阅读这篇文章时,您体内的哪个器官正在思考这个问题?当然是大脑啦!但你知道大脑是如何运作的吗?嗯,它有神经元或神经细胞,它们是大脑和神经系统的主要单位。这些神经元接收来自外界的感觉输入并进行处理,然后提供可能作为下一个神经元的输入的输出。这些神经元中的每一个都通过突触以复杂的排列方式与其他神经元相连。现在,您想知道这与人工神经网络有什么关系吗?嗯,人工神经网络是根据人脑中的神经元建模的。让我们详
- 第四章:人工智能深度学习教程-激活函数(第四节-深入理解激活函数)
geeks老师
人工智能深度学习人工智能深度学习神经网络机器学习数据挖掘计算机视觉自然语言处理
什么是激活函数?在人工神经网络中,节点的激活函数定义了该节点或神经元对于给定输入或一组输入的输出。然后将该输出用作下一个节点的输入,依此类推,直到找到原始问题的所需解决方案。它将结果值映射到所需的范围,例如0到1或-1到1等。这取决于激活函数的选择。例如,使用逻辑激活函数会将实数域中的所有输入映射到0到1的范围内。二元分类问题的示例:在二元分类问题中,我们有一个输入x,比如一张图像,我们必须将其分
- 第四章:人工智能深度学习教程-激活函数(第二节-ANN 中激活函数的类型)
geeks老师
人工智能深度学习人工智能深度学习神经网络开发语言机器学习计算机视觉自然语言处理
生物神经网络以人工神经网络的形式建模,其中人工神经元模拟生物神经元的功能。人工神经元如下图所示:人工神经元的结构每个神经元由三个主要部分组成:一组“i”个突触,其权重为wi。信号xi形成具有权重wi的第i个突触的输入。任何权重的值都可以是正值或负值。正权重具有非凡的效果,而负权重对求和点的输出具有抑制作用。输入信号的求和点由相应的突触权重加权。因为它是加权输入信号的线性组合器或加法器,所以求和点的
- 第四章:人工智能深度学习教程-激活函数(第三节-Pytorch 中的激活函数)
geeks老师
人工智能深度学习人工智能深度学习开发语言pytorch机器学习自然语言处理语音识别
在本文中,我们将了解PyTorch激活函数。目录什么是激活函数以及为什么使用它们?Pytorch激活函数的类型ReLU激活函数:Python3LeakyReLU激活函数:Python3S形激活函数:Python3Tanh激活函数:Python3Softmax激活函数:Python3什么是激活函数以及为什么使用它们?激活函数是Pytorch的构建块。在讨论激活函数的类型之前,让我们首先了解人脑中神经
- 第四章:人工智能深度学习教程-激活函数(第一节-激活函数)
geeks老师
人工智能深度学习人工智能深度学习神经网络开发语言自然语言处理计算机视觉机器学习
简单来说,人工神经元计算其输入的“加权和”并添加偏差,如下图所示的净输入。从数学上来说,现在净输入的值可以是从-inf到+inf之间的任何值。神经元并不真正知道如何绑定到值,因此无法决定激发模式。因此激活函数是人工神经网络的重要组成部分。他们基本上决定神经元是否应该被激活。因此它限制了净输入的值。激活函数是一种非线性变换,我们在将输入发送到下一层神经元或将其最终确定为输出之前对输入进行非线性变换。
- 第三章:人工智能深度学习教程-基础神经网络(第三节-Tensorflow 中的多层感知器学习)
geeks老师
人工智能深度学习人工智能深度学习神经网络
在本文中,我们将了解多层感知器的概念及其使用TensorFlow库在Python中的实现。多层感知器多层感知也称为MLP。它是完全连接的密集层,可将任何输入维度转换为所需的维度。多层感知是具有多个层的神经网络。为了创建神经网络,我们将神经元组合在一起,以便某些神经元的输出是其他神经元的输入。神经网络和TensorFlow的简单介绍可以在这里找到:神经网络TensorFlow简介多层感知器有一个输入
- 第三章:人工智能深度学习教程-基础神经网络(第一节-ANN 和 BNN 的区别)
geeks老师
人工智能深度学习人工智能深度学习神经网络机器学习数据挖掘自然语言处理语言模型
你有没有想过建造大脑之类的东西是什么感觉,这些东西是如何工作的,或者它们的作用是什么?让我们看看节点如何与神经元通信,以及人工神经网络和生物神经网络之间有什么区别。1.人工神经网络:人工神经网络(ANN)是一种基于前馈策略的神经网络。之所以这样称呼,是因为它们不断地通过节点传递信息,直到到达输出节点。这也被称为最简单的神经网络类型。ANN的一些优点:无论数据类型如何(线性或非线性),都能够学习。人
- 合工大《数字媒体技术》课程调研报告-视频伪造
晓宜
媒体音视频人工智能
2022年《数字媒体技术》课程调研报告“视频伪造”技术调研日期:2022.10.01调研报告摘要众所周知,人工智能正迎来第三次发展浪潮,它既给社会发展带来了巨大机遇,同时也带来了诸多风险,人工智能对国家安全的影响已成为世界各国的重要关切和研究议程。作为人工智能深度学习领域的一个分支,Deepfake(深度伪造)技术在近几年迅速兴起,为国家间的政治抹黑、军事欺骗、经济犯罪甚至恐怖主义行动等提供了新工
- 第三章:人工智能深度学习教程-基础神经网络(第六节-ML深度学习层列表)
geeks老师
人工智能深度学习人工智能深度学习神经网络机器学习自然语言处理集成学习迁移学习
要指定所有层按顺序连接的神经网络的架构,请直接创建层数组。要指定层可以有多个输入或输出的网络架构,请使用LayerGraph对象。使用以下函数创建不同的图层类型。输入层:功能描述图像输入层将图像输入网络应用数据标准化序列输入层将序列数据输入到网络。可学习层:功能描述卷积2d层对输入应用滑动过滤器。它通过沿输入垂直和水平移动滤波器并计算权重和输入的点积,然后添加偏差项来对输入进行卷积。转置Conv2
- 第三章:人工智能深度学习教程-基础神经网络(第五节-了解多层前馈网络)
geeks老师
人工智能深度学习人工智能深度学习神经网络机器学习数据挖掘自然语言处理目标检测
让我们了解反向传播网络(BPN)中的误差是如何计算的以及权重是如何更新的。考虑下图中的以下网络。反向传播网络(BPN)上图中的网络是一个简单的多层前馈网络或反向传播网络。它包含三层,输入层有两个神经元x1和x2,隐藏层有两个神经元z1和z2,输出层有一个神经元yin。现在让我们写下每个神经元的权重和偏差向量。注:权重是随机取的。输入层:i/p–[x1x2]=[01]这里,由于它是输入层,因此仅存在
- 第三章:人工智能深度学习教程-基础神经网络(第四节-从头开始的具有前向和反向传播的深度神经网络 – Python)
geeks老师
人工智能深度学习python开发语言AI编程深度学习机器学习人工智能自然语言处理
本文旨在从头开始实现深度神经网络。我们将实现一个深度神经网络,其中包含一个具有四个单元的隐藏层和一个输出层。实施将从头开始,并实施以下步骤。算法:1.可视化输入数据2.确定权重和偏置矩阵的形状3.初始化矩阵、要使用的函数4.前向传播方法的实现5.实施成本计算6.反向传播和优化7.预测和可视化输出模型架构:模型架构如下图所示,其中隐藏层使用双曲正切作为激活函数,而输出层(即分类问题)使用sigmoi
- 第三章:人工智能深度学习教程-基础神经网络(第二节-ANN 和 BNN 的区别)
geeks老师
人工智能深度学习人工智能深度学习神经网络机器学习自然语言处理生成对抗网络语言模型
在本文中,我们将了解单层感知器及其使用TensorFlow库在Python中的实现。神经网络的工作方式与我们的生物神经元的工作方式相同。生物神经元的结构生物神经元具有三个基本功能接收外部信号。处理信号并增强是否需要发送信息。将信号传递给目标细胞,目标细胞可以是另一个神经元或腺体。同样,神经网络也能发挥作用。机器学习中的神经网络什么是单层感知器?它是最古老且最早引入的神经网络之一。它是由弗兰克·罗森
- 第三章:人工智能深度学习教程-人工智能与机器学习与深度学习之间的区别
geeks老师
人工智能深度学习人工智能深度学习机器学习图搜索算法生成对抗网络视觉检测自动驾驶
人工智能基本上是通过一组规则(算法)将人类智能融入机器的机制。人工智能是两个词的组合:“人工”是指由人类或非自然物体制造的东西,“智能”是指相应地理解或思考的能力。另一个定义可能是“人工智能基本上是训练机器(计算机)模仿人脑及其思维能力的研究”。人工智能侧重于3个主要方面(技能):学习、推理和自我纠正,以获得尽可能最大的效率。机器学习:机器学习基本上是一种研究/过程,它使系统(计算机)能够通过其拥
- 第二章:人工智能深度学习教程-深度学习简介
geeks老师
人工智能深度学习人工智能深度学习数据挖掘机器学习神经网络自然语言处理语音识别
深度学习是基于人工神经网络的机器学习的一个分支。它能够学习数据中的复杂模式和关系。在深度学习中,我们不需要显式地对所有内容进行编程。近年来,由于处理能力的进步和大型数据集的可用性,它变得越来越流行。因为它基于人工神经网络(ANN),也称为深度神经网络(DNN)。这些神经网络的灵感来自于人脑生物神经元的结构和功能,它们旨在从大量数据中学习。深度学习是机器学习的一个子领域,涉及使用神经网络来建模和解决
- 人工智能与深度神经网络,人工智能人工神经网络
「已注销」
人工智能dnn机器学习神经网络
人工智能中神经网络训练过程谷歌人工智能写作项目:神经网络伪原创人工智能深度学习的基础知识?在提及人工智能技术的时候,对于深度学习的概念我们就需要了解,只有这样才能更加容易理解人工智能的运行原理,今天,昆明电脑培训就一起来了解一下深度学习的一些基础知识写作猫。首先,什么是学习率?学习率(LearningRate,LR。常用η表示。)是一个超参数,考虑到损失梯度,它控制着我们在多大程度上调整网络的权重
- Java 并发包之线程池和原子计数
lijingyao8206
Java计数ThreadPool并发包java线程池
对于大数据量关联的业务处理逻辑,比较直接的想法就是用JDK提供的并发包去解决多线程情况下的业务数据处理。线程池可以提供很好的管理线程的方式,并且可以提高线程利用率,并发包中的原子计数在多线程的情况下可以让我们避免去写一些同步代码。
这里就先把jdk并发包中的线程池处理器ThreadPoolExecutor 以原子计数类AomicInteger 和倒数计时锁C
- java编程思想 抽象类和接口
百合不是茶
java抽象类接口
接口c++对接口和内部类只有简介的支持,但在java中有队这些类的直接支持
1 ,抽象类 : 如果一个类包含一个或多个抽象方法,该类必须限定为抽象类(否者编译器报错)
抽象方法 : 在方法中仅有声明而没有方法体
package com.wj.Interface;
- [房地产与大数据]房地产数据挖掘系统
comsci
数据挖掘
随着一个关键核心技术的突破,我们已经是独立自主的开发某些先进模块,但是要完全实现,还需要一定的时间...
所以,除了代码工作以外,我们还需要关心一下非技术领域的事件..比如说房地产
&nb
- 数组队列总结
沐刃青蛟
数组队列
数组队列是一种大小可以改变,类型没有定死的类似数组的工具。不过与数组相比,它更具有灵活性。因为它不但不用担心越界问题,而且因为泛型(类似c++中模板的东西)的存在而支持各种类型。
以下是数组队列的功能实现代码:
import List.Student;
public class
- Oracle存储过程无法编译的解决方法
IT独行者
oracle存储过程
今天同事修改Oracle存储过程又导致2个过程无法被编译,流程规范上的东西,Dave 这里不多说,看看怎么解决问题。
1. 查看无效对象
XEZF@xezf(qs-xezf-db1)> select object_name,object_type,status from all_objects where status='IN
- 重装系统之后oracle恢复
文强chu
oracle
前几天正在使用电脑,没有暂停oracle的各种服务。
突然win8.1系统奔溃,无法修复,开机时系统 提示正在搜集错误信息,然后再开机,再提示的无限循环中。
无耐我拿出系统u盘 准备重装系统,没想到竟然无法从u盘引导成功。
晚上到外面早了一家修电脑店,让人家给装了个系统,并且那哥们在我没反应过来的时候,
直接把我的c盘给格式化了 并且清理了注册表,再装系统。
然后的结果就是我的oracl
- python学习二( 一些基础语法)
小桔子
pthon基础语法
紧接着把!昨天没看继续看django 官方教程,学了下python的基本语法 与c类语言还是有些小差别:
1.ptyhon的源文件以UTF-8编码格式
2.
/ 除 结果浮点型
// 除 结果整形
% 除 取余数
* 乘
** 乘方 eg 5**2 结果是5的2次方25
_&
- svn 常用命令
aichenglong
SVN版本回退
1 svn回退版本
1)在window中选择log,根据想要回退的内容,选择revert this version或revert chanages from this version
两者的区别:
revert this version:表示回退到当前版本(该版本后的版本全部作废)
revert chanages from this versio
- 某小公司面试归来
alafqq
面试
先填单子,还要写笔试题,我以时间为急,拒绝了它。。时间宝贵。
老拿这些对付毕业生的东东来吓唬我。。
面试官很刁难,问了几个问题,记录下;
1,包的范围。。。public,private,protect. --悲剧了
2,hashcode方法和equals方法的区别。谁覆盖谁.结果,他说我说反了。
3,最恶心的一道题,抽象类继承抽象类吗?(察,一般它都是被继承的啊)
4,stru
- 动态数组的存储速度比较 集合框架
百合不是茶
集合框架
集合框架:
自定义数据结构(增删改查等)
package 数组;
/**
* 创建动态数组
* @author 百合
*
*/
public class ArrayDemo{
//定义一个数组来存放数据
String[] src = new String[0];
/**
* 增加元素加入容器
* @param s要加入容器
- 用JS实现一个JS对象,对象里有两个属性一个方法
bijian1013
js对象
<html>
<head>
</head>
<body>
用js代码实现一个js对象,对象里有两个属性,一个方法
</body>
<script>
var obj={a:'1234567',b:'bbbbbbbbbb',c:function(x){
- 探索JUnit4扩展:使用Rule
bijian1013
java单元测试JUnitRule
在上一篇文章中,讨论了使用Runner扩展JUnit4的方式,即直接修改Test Runner的实现(BlockJUnit4ClassRunner)。但这种方法显然不便于灵活地添加或删除扩展功能。下面将使用JUnit4.7才开始引入的扩展方式——Rule来实现相同的扩展功能。
1. Rule
&n
- [Gson一]非泛型POJO对象的反序列化
bit1129
POJO
当要将JSON数据串反序列化自身为非泛型的POJO时,使用Gson.fromJson(String, Class)方法。自身为非泛型的POJO的包括两种:
1. POJO对象不包含任何泛型的字段
2. POJO对象包含泛型字段,例如泛型集合或者泛型类
Data类 a.不是泛型类, b.Data中的集合List和Map都是泛型的 c.Data中不包含其它的POJO
- 【Kakfa五】Kafka Producer和Consumer基本使用
bit1129
kafka
0.Kafka服务器的配置
一个Broker,
一个Topic
Topic中只有一个Partition() 1. Producer:
package kafka.examples.producers;
import kafka.producer.KeyedMessage;
import kafka.javaapi.producer.Producer;
impor
- lsyncd实时同步搭建指南——取代rsync+inotify
ronin47
1. 几大实时同步工具比较 1.1 inotify + rsync
最近一直在寻求生产服务服务器上的同步替代方案,原先使用的是 inotify + rsync,但随着文件数量的增大到100W+,目录下的文件列表就达20M,在网络状况不佳或者限速的情况下,变更的文件可能10来个才几M,却因此要发送的文件列表就达20M,严重减低的带宽的使用效率以及同步效率;更为要紧的是,加入inotify
- java-9. 判断整数序列是不是二元查找树的后序遍历结果
bylijinnan
java
public class IsBinTreePostTraverse{
static boolean isBSTPostOrder(int[] a){
if(a==null){
return false;
}
/*1.只有一个结点时,肯定是查找树
*2.只有两个结点时,肯定是查找树。例如{5,6}对应的BST是 6 {6,5}对应的BST是
- MySQL的sum函数返回的类型
bylijinnan
javaspringsqlmysqljdbc
今天项目切换数据库时,出错
访问数据库的代码大概是这样:
String sql = "select sum(number) as sumNumberOfOneDay from tableName";
List<Map> rows = getJdbcTemplate().queryForList(sql);
for (Map row : rows
- java设计模式之单例模式
chicony
java设计模式
在阎宏博士的《JAVA与模式》一书中开头是这样描述单例模式的:
作为对象的创建模式,单例模式确保某一个类只有一个实例,而且自行实例化并向整个系统提供这个实例。这个类称为单例类。 单例模式的结构
单例模式的特点:
单例类只能有一个实例。
单例类必须自己创建自己的唯一实例。
单例类必须给所有其他对象提供这一实例。
饿汉式单例类
publ
- javascript取当月最后一天
ctrain
JavaScript
<!--javascript取当月最后一天-->
<script language=javascript>
var current = new Date();
var year = current.getYear();
var month = current.getMonth();
showMonthLastDay(year, mont
- linux tune2fs命令详解
daizj
linuxtune2fs查看系统文件块信息
一.简介:
tune2fs是调整和查看ext2/ext3文件系统的文件系统参数,Windows下面如果出现意外断电死机情况,下次开机一般都会出现系统自检。Linux系统下面也有文件系统自检,而且是可以通过tune2fs命令,自行定义自检周期及方式。
二.用法:
Usage: tune2fs [-c max_mounts_count] [-e errors_behavior] [-g grou
- 做有中国特色的程序员
dcj3sjt126com
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有
- Android:TextView属性大全
dcj3sjt126com
textview
android:autoLink 设置是否当文本为URL链接/email/电话号码/map时,文本显示为可点击的链接。可选值(none/web/email/phone/map/all) android:autoText 如果设置,将自动执行输入值的拼写纠正。此处无效果,在显示输入法并输
- tomcat虚拟目录安装及其配置
eksliang
tomcat配置说明tomca部署web应用tomcat虚拟目录安装
转载请出自出处:http://eksliang.iteye.com/blog/2097184
1.-------------------------------------------tomcat 目录结构
config:存放tomcat的配置文件
temp :存放tomcat跑起来后存放临时文件用的
work : 当第一次访问应用中的jsp
- 浅谈:APP有哪些常被黑客利用的安全漏洞
gg163
APP
首先,说到APP的安全漏洞,身为程序猿的大家应该不陌生;如果抛开安卓自身开源的问题的话,其主要产生的原因就是开发过程中疏忽或者代码不严谨引起的。但这些责任也不能怪在程序猿头上,有时会因为BOSS时间催得紧等很多可观原因。由国内移动应用安全检测团队爱内测(ineice.com)的CTO给我们浅谈关于Android 系统的开源设计以及生态环境。
1. 应用反编译漏洞:APK 包非常容易被反编译成可读
- C#根据网址生成静态页面
hvt
Web.netC#asp.nethovertree
HoverTree开源项目中HoverTreeWeb.HVTPanel的Index.aspx文件是后台管理的首页。包含生成留言板首页,以及显示用户名,退出等功能。根据网址生成页面的方法:
bool CreateHtmlFile(string url, string path)
{
//http://keleyi.com/a/bjae/3d10wfax.htm
stri
- SVG 教程 (一)
天梯梦
svg
SVG 简介
SVG 是使用 XML 来描述二维图形和绘图程序的语言。 学习之前应具备的基础知识:
继续学习之前,你应该对以下内容有基本的了解:
HTML
XML 基础
如果希望首先学习这些内容,请在本站的首页选择相应的教程。 什么是SVG?
SVG 指可伸缩矢量图形 (Scalable Vector Graphics)
SVG 用来定义用于网络的基于矢量
- 一个简单的java栈
luyulong
java数据结构栈
public class MyStack {
private long[] arr;
private int top;
public MyStack() {
arr = new long[10];
top = -1;
}
public MyStack(int maxsize) {
arr = new long[maxsize];
top
- 基础数据结构和算法八:Binary search
sunwinner
AlgorithmBinary search
Binary search needs an ordered array so that it can use array indexing to dramatically reduce the number of compares required for each search, using the classic and venerable binary search algori
- 12个C语言面试题,涉及指针、进程、运算、结构体、函数、内存,看看你能做出几个!
刘星宇
c面试
12个C语言面试题,涉及指针、进程、运算、结构体、函数、内存,看看你能做出几个!
1.gets()函数
问:请找出下面代码里的问题:
#include<stdio.h>
int main(void)
{
char buff[10];
memset(buff,0,sizeof(buff));
- ITeye 7月技术图书有奖试读获奖名单公布
ITeye管理员
活动ITeye试读
ITeye携手人民邮电出版社图灵教育共同举办的7月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
7月试读活动回顾:
http://webmaster.iteye.com/blog/2092746
本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《Java性能优化权威指南》