POJ 3653 Here We Go(relians) Again (最短路)

题意:给定(n+1)*(m+1)个点,在构成的有向图中,每条边的值为极限速度,每段边长度为LEN,求从起点到终点的最短距离。

思路:没什么技巧,就是最短路算法,把二维点hash到一维就可以了n*k+m,输入时还是需要注意一些小细节,由于数据量不大,O(n^2)的dij就可以,16ms,用priority_queue优化就可以0ms了。

O(nlgn):

 

  
    
#include < iostream >
#include
< cstdio >
#include
< algorithm >
#include
< memory.h >
#include
< cmath >
#include
< bitset >
#include
< queue >
#include
< vector >
using namespace std;

const int BORDER = ( 1 << 20 ) - 1 ;
const int MAXSIZE = 37 ;
const int MAXN = 1105 ;
const int INF = 1000000000 ;
#define CLR(x,y) memset(x,y,sizeof(x))
#define ADD(x) x=((x+1)&BORDER)
#define IN(x) scanf("%d",&x)
#define OUT(x) printf("%d\n",x)
#define MIN(m,v) (m)<(v)?(m):(v)
#define MAX(m,v) (m)>(v)?(m):(v)
#define ABS(x) ((x)>0?(x):-(x))

#define LEN 2520
#define SET_NODE(no,a,b) {no.u=a;no.val=b;}

typedef
struct {
int v,next;
int val;
}Edge;
typedef
struct {
int u;
int val;
}Node;
bool operator < ( const Node & a, const Node & b)
{
return a.val > b.val;
}

Edge edge[MAXN
* MAXN];
int n,m,start,end,index;
int dist[MAXN],net[MAXN];
bool visit[MAXN];

void add_edge( const int & u, const int & v, const int & sp)
{
edge[index].v
= v;
edge[index].next
= net[u];
edge[index].val
= sp;
net[u]
= index ++ ;
}
void add_input( const int & u, const int & v, const int & sp, const char & c)
{
if (c == ' * ' )
{
add_edge(u,v,sp);
add_edge(v,u,sp);
return ;
}
if ( c == ' > ' || c == ' v ' )
add_edge(u,v,sp);
else
add_edge(v,u,sp);
}
int init()
{
index
= 0 ;
CLR(net,
- 1 );
CLR(visit,
0 );
CLR(dist,
127 );
return 0 ;
}
int input()
{
int i,j,u,v,tmp,sp;
char ch;
for (i = 0 ; i < n - 1 ; ++ i)
{
for (j = 0 ; j < m - 1 ; ++ j)
{
scanf(
" %d %c " , & sp, & ch);
if (sp == 0 )
continue ;
u
= i * m + j;
v
= u + 1 ;
add_input(u,v,sp,ch);
}
for (j = 0 ; j < m; ++ j)
{
scanf(
" %d %c " , & sp, & ch);
if (sp == 0 )
continue ;
u
= i * m + j;
v
= (i + 1 ) * m + j;
add_input(u,v,sp,ch);
}
}
for (j = 0 ; j < m - 1 ; ++ j)
{
scanf(
" %d %c " , & sp, & ch);
u
= (n - 1 ) * m + j;
v
= u + 1 ;
if (sp == 0 )
continue ;
add_input(u,v,sp,ch);
}
return 0 ;
}
int dij()
{
int i,j,u,tmp,mark,mmin,v;
int N = n * m;
priority_queue
< Node > que;
Node node,t_node;
while ( ! que.empty())
que.pop();
SET_NODE(t_node,
0 , 0 );
que.push(t_node);
dist[
0 ] = 0 ;
CLR(visit,
0 );
while ( ! que.empty())
{
node
= que.top();
que.pop();
u
= node.u;
if (visit[node.u])
continue ;
if (u == N - 1 )
return node.val;
visit[u]
= true ;
for (i = net[u]; i != - 1 ; i = edge[i].next)
{
v
= edge[i].v;
if (visit[v])
continue ;
tmp
= dist[u] + LEN / edge[i].val;
if (dist[v] > tmp)
{
dist[v]
= tmp;
SET_NODE(t_node,v,tmp);
que.push(t_node);
}
}
}
return - 1 ;
}
int work()
{
int i,j,ans;
ans
= dij();
if (ans == - 1 )
printf(
" Holiday\n " );
else
printf(
" %d blips\n " ,ans);
return 0 ;
}
int main()
{
while (scanf( " %d%d " , & n, & m))
{
if ( ! n && ! m)
break ;
++ n, ++ m;
init();
input();
work();
}
return 0 ;
}

O(n^2):

 

 

  
    
#include < iostream >
#include
< cstdio >
#include
< algorithm >
#include
< memory.h >
#include
< cmath >
#include
< bitset >
#include
< queue >
#include
< vector >
using namespace std;

const int BORDER = ( 1 << 20 ) - 1 ;
const int MAXSIZE = 37 ;
const int MAXN = 1105 ;
const int INF = 1000000000 ;
#define CLR(x,y) memset(x,y,sizeof(x))
#define ADD(x) x=((x+1)&BORDER)
#define IN(x) scanf("%d",&x)
#define OUT(x) printf("%d\n",x)
#define MIN(m,v) (m)<(v)?(m):(v)
#define MAX(m,v) (m)>(v)?(m):(v)
#define ABS(x) ((x)>0?(x):-(x))

#define LEN 2520

typedef
struct {
int v,next;
int val;
}Edge;
typedef
struct {
int u;
int val;
}Node;
bool operator < ( const Node & a, const Node & b)
{
return a.val > b.val;
}

Edge edge[MAXN
* MAXN];
int n,m,start,end,index;
int dist[MAXN],net[MAXN];
bool visit[MAXN];

void add_edge( const int & u, const int & v, const int & sp)
{
edge[index].v
= v;
edge[index].next
= net[u];
edge[index].val
= sp;
net[u]
= index ++ ;
}
void add_input( const int & u, const int & v, const int & sp, const char & c)
{
if (c == ' * ' )
{
add_edge(u,v,sp);
add_edge(v,u,sp);
return ;
}
if ( c == ' > ' || c == ' v ' )
add_edge(u,v,sp);
else
add_edge(v,u,sp);
}
int init()
{
index
= 0 ;
CLR(net,
- 1 );
CLR(visit,
0 );
CLR(dist,
127 );
return 0 ;
}
int input()
{
int i,j,u,v,tmp,sp;
char ch;
for (i = 0 ; i < n - 1 ; ++ i)
{
for (j = 0 ; j < m - 1 ; ++ j)
{
// cin>>sp>>ch;
scanf( " %d %c " , & sp, & ch);
if (sp == 0 )
continue ;
u
= i * m + j;
v
= u + 1 ;
add_input(u,v,sp,ch);
}
for (j = 0 ; j < m; ++ j)
{
// cin>>sp>>ch;
scanf( " %d %c " , & sp, & ch);
if (sp == 0 )
continue ;
u
= i * m + j;
v
= (i + 1 ) * m + j;
add_input(u,v,sp,ch);
}
}
for (j = 0 ; j < m - 1 ; ++ j)
{
// cin>>sp>>ch;
scanf( " %d %c " , & sp, & ch);
u
= (n - 1 ) * m + j;
v
= u + 1 ;
if (sp == 0 )
continue ;
add_input(u,v,sp,ch);
}
return 0 ;
}
int dij()
{
int i,j,tmp,mark,mmin,v;
int N = n * m;
dist[
0 ] = 0 ;
CLR(visit,
0 );
for (i = 0 ; i < N; ++ i)
{
mmin
= INF;
for (j = 0 ; j < N; ++ j)
if ( ! visit[j] && mmin > dist[j])
{
mmin
= dist[j];
mark
= j;
}
visit[mark]
= true ;
for (j = net[mark]; j != - 1 ; j = edge[j].next)
{
tmp
= LEN / edge[j].val;
v
= edge[j].v;
if ( ! visit[v] && dist[v] > tmp + mmin)
{
dist[v]
= tmp + mmin;
}
}
}
if (dist[N - 1 ] > INF)
return - 1 ;
return dist[N - 1 ];
}
int work()
{
int i,j,ans;
ans
= dij();
if (ans == - 1 )
printf(
" Holiday\n " );
else
printf(
" %d blips\n " ,ans);
return 0 ;
}
int main()
{
while (scanf( " %d%d " , & n, & m))
{
if ( ! n && ! m)
break ;
++ n, ++ m;
init();
input();
work();
}
return 0 ;
}

 

 

你可能感兴趣的:(poj)